BUCKINGHAM TOWNSHIP
STORMWATER MANAGEMENT ORDINANCE

Implementing the requirements of the
Neshaminy Creek Watershed and the Delaware River South
Watershed Act 167 Stormwater Management Plans

ORDINANCE NO. 2011 - 02

BUCKINGHAM TOWNSHIP, BUCKS COUNTY,
PENNSYLVANIA

Adopted at a Public Meeting Held on
_____May 11_______, 2011
TABLE OF CONTENTS

ARTICLE I. GENERAL PROVISION .. 4
Section 101. Short Title .. 4
Section 102. Statement of Findings ... 4
Section 103. Purpose .. 5
Section 104. Statutory Authority .. 5
Section 105. Applicability/Regulated Activities .. 6
Section 106. Exemptions .. 6
Section 107. Repealer ... 8
Section 108. Severability .. 8
Section 109. Compatibility with Other Ordinance or Legal Requirements 8
Section 110. Modifications ... 8

ARTICLE II. DEFINITIONS ... 9
Section 201. Interpretation .. 9
Section 202. Definitions .. 9
Section 203. Carbonate (Limestone) Geology Definitions ... 21

ARTICLE III. STORMWATER MANAGEMENT ... 24
Section 301. General Requirements .. 24
Section 302. Permit Requirements by Other Governmental Entities 26
Section 303. Volume Control ... 26
Section 304. Stormwater Peak Rate Control and Management Districts 29
Section 305. Calculation Methodology ... 31
Section 306. General Design Requirements for SWM Facilities .. 33
Section 307. Other Requirements ... 35

ARTICLE IV. STORMWATER MANAGEMENT (SWM) SITE PLAN REQUIREMENTS 42
Section 401. General Requirements ... 42
Section 402. SWM Site Plan Requirements ... 42
Section 403. Plan Submission .. 46
Section 404. Stormwater Management (SWM) Site Plan Review .. 47
Section 405. Modification of Plans ... 47
Section 406. Resubmission of Disapproved SWM Site Plans .. 47
Section 407. Authorization to Construct and Term of Validity .. 47

ARTICLE V. INSPECTIONS .. 48
Section 501. Inspections .. 48

ARTICLE VI. FEES AND EXPENSES .. 49
Section 601. Municipal Stormwater Management (SWM) Site Plan Review and Inspection Fee 49
Section 602. Expenses Covered by Site Plan Review and Inspection Fees 49

ARTICLE VII. MAINTENANCE RESPONSIBILITIES .. 50
Section 701. Performance Guarantee ... 50
Section 702. Responsibilities for Operations and Maintenance (O&M) of Stormwater Facilities and BMPs ... 51
Section 703. Municipal Review of Stormwater Facilities and BMP Operations and Maintenance (O&M) Plan ... 52
Section 704. Operations and Maintenance (O&M) Agreement for Privately Owned Stormwater Facilities and BMPs ... 53
Section 705. Stormwater Management Easements .. 53
ARTICLE VIII. PROHIBITIONS ... 54
Section 801. Prohibited Discharges ... 54
Section 802. Roof Drains ... 55
Section 803. Alteration of SWM BMPs ... 55
ARTICLE IX. ENFORCEMENT AND PENALTIES .. 56
Section 901. Right-of-Entry ... 56
Section 902. Inspection ... 56
Section 903. Enforcement .. 56
Section 904. Suspension and Revocation of Permits and Approvals ... 57
Section 905. Penalties .. 57
Section 906. Appeals ... 58
BUCKINGHAM TOWNSHIP STORMWATER MANAGEMENT PLAN ORDINANCE
ENACTMENT .. 59

TABLES
Table 106.1 Impervious Surface Exemption Thresholds for the Buckingham Township 6
Table 304.1 Peak Rate Runoff Control Standards by Stormwater Management Districts in the
Neshaminy Creek Watershed .. 29
Table 304.2 Peak Rate Runoff Control Standards by Stormwater Management Districts in the
Delaware River South Watershed ... 30
Table 305.1 Acceptable Computation Methodologies for Stormwater Management Plans 31

APPENDIX
APPENDIX A: STORMWATER CONTROLS AND BEST MANAGEMENT PRACTICES
OPERATIONS AND MAINTENANCE AGREEMENT
APPENDIX B: STORMWATER MANAGEMENT DESIGN CRITERIA
APPENDIX C: STORMWATER MANAGEMENT (SWM) SITE PLAN APPLICATION
APPENDIX D: MAPS OF MANAGEMENT DISTRICTS
APPENDIX E: LOW IMPACT DEVELOPMENT (LID) PRACTICES
APPENDIX F: DISCONNECTED IMPERVIOUS AREA (DIA)
APPENDIX G: HOT SPOTS
APPENDIX H: WEST NILE VIRUS GUIDANCE
APPENDIX I: SMALL PROJECT STORMWATER MANAGEMENT (SWM) SITE PLAN
APPENDIX J: REFERENCES
ARTICLE I. GENERAL PROVISIONS

Section 101. Short Title

This Ordinance shall be known and may be cited as the “Buckingham Township Stormwater Management Ordinance”

Section 102. Statement of Findings

The Governing Body of the Municipality finds that:

A. The Pennsylvania Department of Environmental Protection has mandated, in accordance with Section 11(b) of the Stormwater Management Act (1978 Act 167), that each municipality within the area covered by the Neshaminy Creek Watershed Stormwater Management Plan and the Delaware River South Watershed Stormwater Management Plan enact ordinances and regulations as are necessary to regulate development within the municipality in a manner consistent with the Approved Neshaminy Creek Watershed Stormwater Management Plan, the Approved Delaware River South Watershed Stormwater Management Plan and the provisions of the Stormwater Management Act.

B. Inadequate management of accelerated stormwater runoff resulting from development and redevelopment throughout a watershed increases flood flows and velocities, contributes to erosion and sedimentation, overtaxes the carrying capacity of streams and storm sewers, greatly increases the cost of public facilities to convey and manage stormwater, undermines floodplain management and flood reduction efforts in upstream and downstream communities, reduces groundwater recharge, and threatens public health and safety.

C. Inadequate planning and management of stormwater runoff resulting from land development and redevelopment throughout a watershed can also harm surface water resources by changing the natural hydrologic patterns, accelerating stream flows (which increase scour and erosion of streambeds and streambanks, thereby elevating sedimentation), destroying aquatic habitat, and elevating aquatic pollutant concentrations and loadings such as sediments, nutrients, heavy metals, and pathogens.

D. A comprehensive program of stormwater management (SWM), including reasonable regulation of development and activities causing accelerated runoff, is fundamental to the public health, safety, welfare, and the protection of the people of the municipality and all the people of the Commonwealth, their resources, and the environment.

E. Stormwater is an important water resource by providing groundwater recharge for water supplies and base flow of streams, which also protects and maintains surface water quality.

F. Public education on the control of pollution from stormwater is an essential component in successfully addressing stormwater.

G. Federal and state regulations require certain municipalities to implement a program of stormwater controls. These municipalities are required to obtain a permit for stormwater discharges from their separate storm sewer systems under the National Pollutant Discharge Elimination System (NPDES).
Section 103. Purpose

The purpose of this Ordinance is to promote the public health, safety, and welfare within the Neshaminy Creek and Delaware River South watersheds by maintaining the natural hydrologic regime and by minimizing the harms and maximizing the benefits described in Section 102 of this Ordinance, through provisions designed to:

A. Meet legal water quality requirements under state law, including regulations at 25 Pa. Code 93 to protect, maintain, reclaim, and restore the existing and designated uses of the waters of this Commonwealth.

B. Minimize increases in stormwater volume and control peak flows.

C. Minimize impervious surfaces.

D. Provide review procedures and performance standards for stormwater planning and management.

E. Preserve the natural drainage systems as much as possible.

F. Manage stormwater impacts close to the runoff source, requiring a minimum of structures and relying on natural processes.

G. Focus on infiltration of stormwater to maintain groundwater recharge, to prevent degradation of surface and groundwater quality, and to otherwise protect water resources.

H. Preserve and restore the flood-carrying capacity of streams.

I. Prevent scour and erosion of streambanks and stream beds.

J. Provide standards to meet National Pollution Discharge Elimination System (NPDES) permit requirements.

K. Address certain requirements of the Municipal Separate Stormwater Sewer System (MS4) NPDES Phase II Stormwater Regulations.

L. Provide for proper operation and maintenance of all stormwater management facilities and Best Management Practices (BMPs) that are implemented in the Municipality.

Section 104. Statutory Authority

The Municipality is empowered to regulate land use activities that affect runoff, surface, and groundwater quality and quantity by the authority of:

B. Second Class Township Code (Act 69 of 1933, P.L. 103; 53 P.S. § 65101, as amended).
Section 105. Applicability/Regulated Activities

All Regulated Activities and all activities that may affect stormwater runoff, including Land Development and Earth Disturbance Activity, are subject to regulation by this Ordinance.

Regulated activities include, but are not limited to;

1. Land development,
2. Subdivisions,
3. Prohibited or polluted discharges,
4. Alteration of the natural hydrologic regime,
5. Construction or reconstruction of, or addition of new impervious or semi-pervious surfaces (i.e., driveways, parking lots, roads, etc.), except for reconstruction of roads where there is no increase in impervious surface,
6. Construction of new buildings or additions to existing buildings,
7. Redevelopment,
8. Diversion piping or encroachments in any natural or man-made channel, and

Section 106. Exemptions

A. Regulated Activities that create impervious surfaces smaller than or equal to 1,000 square feet are exempt from the peak rate control requirements and the SWM Site Plan preparation located in Section IV of this Ordinance unless the activity is determined by the Township to be a significant contributor of pollution to the waters of this Commonwealth. In the event that the SWM Site Plan requirements are exempt from the provisions of this Ordinance, the Applicant remains responsible for providing sufficient information to the Township to verify compliance with the remaining requirements of this Ordinance.

Table 106.1 Impervious Surface Exemption Thresholds for Buckingham Township

<table>
<thead>
<tr>
<th>Ordinance Article or Section</th>
<th>Type of Project</th>
<th>Proposed Impervious Surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Article IV SWM Site Plan Requirements</td>
<td>Development</td>
<td>Exempt</td>
</tr>
<tr>
<td>Section 303 Volume Requirements</td>
<td>Development</td>
<td>Not Exempt*</td>
</tr>
<tr>
<td>Section 304 Peak Rate Control Requirements</td>
<td>Development</td>
<td>Exempt</td>
</tr>
<tr>
<td>Erosion and Sediment Pollution Control Requirements</td>
<td>Must comply with Title 25, Chapter 102 of the PA Code and any other applicable state, county, and municipal codes.</td>
<td></td>
</tr>
</tbody>
</table>

* Unless Regulated Activity is specifically identified as exempt in Section 106.
B. Regulated Activities that create impervious surfaces between 1,001 square feet up to and including 5,000 square feet are exempt only from the peak rate control requirements of this Ordinance.

C. Regulated Activities associated with residential development projects that create impervious surfaces between 1,001 square feet up to and including 5,000 square feet are exempt from the SWM Site Plan preparation located in Section IV of this Ordinance provided that the Applicant complies with the Small Project SWM Site Plan requirements provided in Appendix I of this Ordinance unless the activity is determined by the Township to be a significant contributor of pollution to the waters of this Commonwealth.

D. Any Regulated Activity specified in Section 105 that is also subject to the provisions of the Buckingham Township Subdivision and Land Development Ordinance, as amended, shall be exempt from the provisions of this Ordinance provided that the Regulated Activities are approved by the Buckingham Township Board of Supervisors in accordance with the provisions of the Subdivision and Land Development Ordinance.

E. Regulated Activates that are located within the tributary drainage area of a previously approved and constructed Stormwater Management Facility, which meets the requirements of this Ordinance, are exempt from the requirements of this Ordinance provided that the Applicant submits documentation that verifies that the existing facility has been designed and constructed to meet the applicable Release Rate and Volume Control Requirements of this Ordinance. In situations where only the Peak Rate Control Requirements have been addressed by the previously construction Stormwater Management Facility, the Applicant will only be exempt from the Peak Rate Control Requirements.

F. Residential decks shall be exempt from the provisions of this Ordinance provided that the total impervious surface coverage does not exceed the maximum impervious surface ratio permitted by the Township Zoning Ordinance.

G. Regulated Activities that create impervious surface areas that are less than or equal to 500 square feet for activities that do not require a Building Permit shall be exempt from the provisions of this Ordinance provided that the total impervious surface coverage does not exceed the maximum impervious surface ratio permitted by the Township Zoning Ordinance.

H. Agricultural activity is exempt from the peak rate control requirements and SWM Site Plan preparation requirements of this Ordinance provided the activities are performed according to the requirements of 25 Pa. Code 102.

I. Forest management and timber operations are exempt from the peak rate control requirements and SWM Site Plan preparation requirements of this Ordinance provided the activities are performed according to the requirements of 25 Pa. Code 102 and the Township’s Zoning Ordinance, as amended.

J. Any aspect of BMP maintenance to an existing SWM system made in accordance with plans and specifications approved by the municipality is exempt.

K. The use of land for the cultivation of herbs, fruits, flowers, or vegetables for personal use or consumption is exempt from the requirements of this ordinance.
L. Exemptions from any provisions of this Ordinance shall not relieve the applicant from the requirements in Section 301.D through L.

M. Additional Exemption Criteria:

1. Exemption Responsibilities – An exemption shall not relieve the Applicant from implementing such measures as are necessary to protect public health, safety, and property.

2. Drainage Problems – Where drainage problems are documented or known to exist downstream of or is expected from the proposed activity, the Municipality may deny exemptions.

3. Exemptions are limited to specific portions of this Ordinance.

4. HQ and EV Streams – The municipality may deny exemptions in high quality (HQ) or exceptional value (EV) waters and Source Water Protection Areas (SWPA).

5. Carbonate (Limestone) Geology – The municipality may deny exemptions in areas underlain by carbonate geology. SWM Site Plans shall be provided for all Regulated Activities within the Buckingham Carbonate Valley.

Section 107. Repealer

Any other Ordinance or Ordinance provision of the Municipality inconsistent with any of the provisions of this Ordinance is hereby repealed to the extent of the inconsistency only.

Section 108. Severability

Should any section or provision of this Ordinance be declared invalid by a court of competent jurisdiction, such decision shall not affect the validity of any of the remaining provisions of this Ordinance.

Section 109. Compatibility with Other Ordinance or Legal Requirements

Approvals issued pursuant to this Ordinance do not relieve the Applicant of the responsibility to secure required permits or approvals for activities regulated by any other applicable code, rule, act, or ordinance.

Section 110. Modifications

The Board of Supervisors may grant modification of the requirements of one or more provisions of this Ordinance if the literal enforcement will exact undue hardship because of peculiar conditions pertaining to the land in question, provided that such modification will not be contrary to the public interest and that the purpose and intent of the ordinance is observed. All requests for a modification shall be in writing and shall accompany and be a part of the application. The request shall state in full the grounds and facts of unreasonableness or hardship on which the request is based, the provision or provisions of the ordinance involved and the minimum modification necessary. The Board of Supervisors shall keep a written record of all action on all requests for modifications. [Pennsylvania Municipalities Planning Code, Article V, Section 512.1]
ARTICLE II. DEFINITIONS

Section 201. Interpretation

For the purposes of this Ordinance, certain terms and words used herein shall be interpreted as follows:

A. Words used in the present tense include the future tense; the singular number includes the plural, and the plural number includes the singular; words of masculine gender include feminine gender; and words of feminine gender include masculine gender.

B. The word “includes” or “including” shall not limit the term to the specific example, but is intended to extend its meaning to all other instances of like kind and character.

C. The word “person” includes an individual, firm, association, organization, partnership, trust, company, corporation, unit of government, or any other similar entity.

D. The words “shall” and “must” are mandatory; the words “may” and “should” are permissive.

E. The words “used” or “occupied” include the words “intended, designed, maintained, or arranged to be used, occupied or maintained.”

Section 202. Definitions

Accelerated Erosion – The removal of the surface of the land through the combined action of man’s activity and the natural processes of a rate greater than would occur because of the natural process alone.

Agricultural Activity – Activities associated with agriculture such as agricultural cultivation, agricultural operation, and animal heavy use areas. This includes the work of producing crops including tillage, land clearing, plowing, disking, harrowing, planting, harvesting crops or pasturing and raising of livestock and installation of conservation measures. Construction of new buildings or impervious area is not considered an agricultural activity.

Alteration – As applied to land, a change in topography as a result of the moving of soil and rock from one location or position to another; also the changing of surface conditions by causing the surface to be more or less impervious as the result of changing the land cover including the water, vegetation and bare soil.

Applicant – A person who has filed an application for approval to engage in any Regulated Activity defined in Section 105 of this Ordinance.

As-built Drawings – Engineering or site drawings maintained by the Applicant as he constructs the project and upon which he documents the actual locations of the building components and changes to the original contract documents. These documents, or a copy of same, are turned over to the Township at the completion of the project.
Bankfull – The channel at the top-of-bank, or point from where water begins to overflow onto a floodplain.

Base Flow – Portion of stream discharge derived from groundwater; the sustained discharge that does not result from direct runoff or from water diversions, reservoir releases, piped discharges, or other human activities.

Best Management Practices (BMP) – Activities, facilities, designs, measures, or procedures used to manage stormwater impacts from regulated activities, to meet state water quality requirements, to promote groundwater recharge, and to otherwise meet the purposes of this Ordinance. Stormwater BMPs are commonly grouped into one of two broad categories or measures: “structural” or “nonstructural.” In this Ordinance, nonstructural BMPs or measures refer to operational and/or behavior-related practices that attempt to minimize the contact of pollutants with stormwater runoff whereas structural BMPs or measures are those that consist of a physical device or practice that is installed to capture and treat stormwater runoff. Structural BMPs include, but are not limited to, a wide variety of practices and devices, from large-scale retention ponds and constructed wetlands, to small-scale underground treatment systems, infiltration facilities, filter strips, low impact design, bioretention, wet ponds, permeable paving, grassed swales, riparian or forested buffers, sand filters, detention basins, and manufactured devices. Structural stormwater BMPs are permanent appurtenances to the project site.

Bioretention – A stormwater retention area that utilizes woody and herbaceous plants and soils to remove pollutants before infiltration occurs.

Channel – An open drainage feature through which stormwater flows. Channels include, but shall not be limited to, natural and man-made watercourses, swales, streams, ditches, canals, and pipes that convey continuously or periodically flowing water.

Cistern – An underground reservoir or tank for storing rainwater.

Conservation District – The Bucks County Conservation District.

Culvert – A structure with its appurtenant works, which carries water under or through an embankment or fill.

Curve Number – Value used in the Soil Cover Complex Method. It is a measure of the percentage of precipitation which is expected to run off from the watershed and is a function of the soil, vegetative cover, and tillage method.

Dam – A man-made barrier, together with its appurtenant works, constructed for the purpose of impounding or storing water or another fluid or semifluid. A dam may include a refuse bank, fill or structure for highway, railroad or other purposes which impounds or may impound water or another fluid or semifluid.
Department – The Pennsylvania Department of Environmental Protection (PADEP).

Designee – The agent of the Bucks County, Bucks County Conservation District, and/or agent of the Governing Body involved with the administration, review, or enforcement of any provisions of this Ordinance by contract or memorandum of understanding.

Design Professional (Qualified) – A Pennsylvania Registered Professional Engineer, Registered Landscape Architect or Registered Professional Land Surveyor trained to develop stormwater management plans.

Design Storm – The magnitude and temporal distribution of precipitation from a storm event measured in probability of occurrence (e.g., a 5-year storm) and duration (e.g., 24-hours), used in the design and evaluation of stormwater management systems.

Detention Basin – An impoundment designed to collect and retard stormwater runoff by temporarily storing the runoff and releasing it at a predetermined rate. Detention basins are designed to drain completely soon after a rainfall event and become dry until the next rainfall event.

Detention Volume - The volume of runoff that is captured and released into the Waters of the Commonwealth at a controlled rate.

Developer – A person that seeks to undertake a land development or subdivision.

Development – Any human-induced change to improved or unimproved real estate, whether public or private, including but not limited to land development, construction, installation, or expansion of a building or other structure, land division, street construction, drilling, and site alteration such as embankments, dredging, grubbing, grading, paving, parking or storage facilities, excavation, filling, stockpiling, or clearing. As used in this ordinance, development encompasses both new development and redevelopment.

Development Site – The specific tract or parcel of land where any regulated activity set forth in Section 105 is planned, conducted or maintained.

Diffused Drainage Discharge – Drainage discharge that is not confined to a single point location or channel, including sheet flow or shallow concentrated flow.

Discharge – 1. (verb) To release water from a project, site, aquifer, drainage basin or other point of interest (verb); 2. (noun) The rate and volume of flow of water such as in a stream, generally expressed in cubic feet per second. See also Peak Discharge.

Discharge Point – The point of discharge for a stormwater facility.
Disconnected Impervious Area (DIA) – An impervious or impermeable surface that is disconnected from any stormwater drainage or conveyance system and is redirected or directed to a pervious area, which allows for infiltration, filtration, and increased time of concentration as specified in Appendix F, Disconnected Impervious Area.

Disturbed Areas – Unstabilized land area where an earth disturbance activity is occurring or has occurred.

Ditch – A man-made waterway constructed for irrigation or stormwater conveyance purposes.

Drainage Conveyance Facility – A stormwater management facility designed to transport stormwater runoff that includes channels, swales, pipes, conduits, culverts, and storm sewers.

Drainage Easement – A right granted by a landowner to a grantee, allowing the use of private land for stormwater management purposes.

Drainage Permit – A permit issued by the municipality after the SWM Site Plan has been approved.

Earth Disturbance Activity – A construction or other human activity that disturbs the surface of land, including, but not limited to, clearing and grubbing, grading, excavations, embankments, land development, agricultural plowing or tilling, timber harvesting activities, road maintenance activities, mineral extraction, and the moving, depositing, stockpiling, or storing of soil, rock or earth materials.

Emergency Spillway – A conveyance area that is used to pass peak discharge greater than the maximum design storm controlled by the stormwater facility.

Encroachment – A structure or activity that changes, expands or diminishes the course, current or cross section of a watercourse, floodway or body of water.

Existing Resources and Site Analysis Map – A base map which identifies fundamental environmental site information including floodplains, wetlands, topography, vegetative site features, natural areas, prime agricultural land and areas supportive of endangered species.

Erosion – The process by which the surface of the land, including water/stream channels, is worn away by water, wind, or chemical action.

Erosion and Sediment Control Plan – A site-specific plan identifying BMPs to minimize accelerated erosion and sedimentation. For agricultural plowing or tilling activities, the Erosion and Sediment Control Plan is that portion of a conservation plan identifying BMPs to minimize accelerated erosion and sedimentation.

Exceptional Value Waters – Surface waters of high quality which satisfy Pennsylvania Code Title 25 Environmental Protection, Chapter 93, Water Quality Standards, §93.4b(b) (relating to antidegradation).
Existing Conditions – The initial condition of a project site prior to the proposed alteration.

Existing Recharge Area – Undisturbed surface area or depression where stormwater collects and a portion of which infiltrates and replenishes the groundwater.

Flood – A temporary condition of partial or complete inundation of land areas from the overflow of streams, rivers, and other waters of the Commonwealth.

Floodplain – Areas adjoining streams, ponds, or lakes subject to the 100-year recurrence interval flood. The areas considered to be Flood Plain within Buckingham Township shall include those areas identified as being subject to the 100-year flood in the Flood Insurance Study prepared for Buckingham Township by the Federal Emergency Management Agency (FEMA) dated September, 1978 and the accompanying maps dated March 15, 1979 (or more recent versions). For "critical facilities" the relevant flood plain is the 500 year flood plain; see Buckingham Township Zoning Ordinance Section 3102.Q.

Floodway – The channel of a watercourse and those portions of the adjoining floodplains, which are reasonably required to carry and discharge the 100-year frequency flood. Unless otherwise specified, the boundary of the floodway is as indicated on maps and flood insurance studies provided by FEMA. In an area where no FEMA maps or studies have defined the boundary of the 100-year frequency floodway, it is assumed, absent evidence to the contrary, that the floodway extends from the stream to 50 feet from the top-of-bank.

Forest Management/Timber Operations – Planning and associated activities necessary for the management of forestland. These include timber inventory and preparation of forest management plans, silvicultural treatment, cutting budgets, logging road design and construction, timber harvesting, and reforestation.

Freeboard – A vertical distance between the elevation of the design high-water and the top of a dam, levee, tank, basin, swale, or diversion berm. The space is required as a safety margin in a pond or basin.

Governing Body – elected Buckingham Township Board of Supervisors.

Grade – 1. (noun) A slope, usually of a road, channel or natural ground specified in percent and shown on plans as specified herein. 2. (verb) To finish the surface of a roadbed, the top of an embankment, or the bottom of excavation.

Groundwater – Water beneath the earth's surface that supplies wells and springs, and is often between saturated soil and rock.

Groundwater Recharge – The replenishment of existing natural underground water supplies from rain or overland flow.

HEC-HMS – The U.S. Army Corps of Engineers, Hydrologic Engineering Center (HEC) - Hydrologic Modeling System (HMS). This model was used to model the Neshaminy Creek watershed during the Act 167 Plan development and was the basis for the Standards and Criteria of
High Quality Waters – Surface waters having quality which exceeds levels necessary to support propagation of fish, shellfish, and wildlife and recreation in and on the water by satisfying Pennsylvania Code Title 25 Environmental Protection, Chapter 93 Water Quality Standards, § 93.4b(a).

Hot spot – An area where land use or activity generates highly contaminated runoff, with concentrations of pollutants in excess of those typically found in stormwater. Typical pollutant loadings in stormwater may be found in Chapter 8 Section 6 of the Pennsylvania Stormwater Best Management Practices Manual, Pennsylvania Department of Environmental Protection (PADEP) no. 363-0300-002 (2006). More information concerning hot spots may be found in Section 306.A of this Ordinance.

Hydrograph – A graph representing the discharge of water versus time for a selected point in the drainage system.

Hydrologic Regime – The hydrologic cycle or balance that sustains quality and quantity of stormwater, baseflow, storage, and groundwater supplies under natural conditions.

Hydrologic Soil Group – A classification of soils by the Natural Resources Conservation Service, formerly the Soil Conservation Service, into four runoff potential groups. The groups range from A soils, which are very permeable and produce little runoff, to D soils, which are not very permeable and produce much more runoff.

Impervious Surface – Those surfaces that do not absorb water. All buildings, building area, parking areas, driveways, roads, sidewalks, wood decks and any areas in concrete, pervious or impervious pavement, paver blocks, asphalt and packed stone shall be considered impervious surfaces within this definition. The surface area of a swimming pool shall be considered pervious.

Impoundment – A retention or detention basin designed to retain stormwater runoff and release it at a controlled rate.

Infill development – Development that occurs on smaller parcels that remain undeveloped but are within or very close proximity to urban or densely developed areas. Infill development usually relies on existing infrastructure and does not require an extension of water, sewer or other public utilities.

Infiltration – Movement of surface water into the soil, where it is absorbed by plant roots, evaporated into the atmosphere, or percolated downward to recharge groundwater.

Infiltration Structures – A structure designed to direct runoff into the underground water (e.g., French drains, seepage pits, or seepage trenches).

Initial Abstraction (Ia): The value used to calculate the volume or peak rate of runoff in the soil cover complex method. It represents the depth of rain retained on vegetation plus the depth of rain stored on the soil surface plus the depth of rain infiltrated prior to the start of runoff.
Inlet – The upstream end of any structure through which water may flow.

Intermittent Stream – A stream that flows only part of the time. Flow generally occurs for several weeks or months in response to seasonal precipitation or groundwater discharge.

Karst – A type of topography or landscape characterized by surface depressions, sinkholes, rock pinnacles/uneven bedrock surface, underground drainage, and caves. Karst is formed on carbonate rocks, such as limestone or dolomite.

Land Development – Any of the following activities:

i. The improvement of one lot or two or more contiguous lots, tracts, or parcels of land for any purpose involving:
 a. group of two or more residential or nonresidential buildings, whether proposed initially or cumulatively, or a single nonresidential building on a lot or lots regardless of the number of occupants or tenure, or
 b. The division or allocation of land or space, whether initially or cumulatively, between or among two or more existing or prospective occupants by means of, or for the purpose of streets, common areas, leaseholds, condominiums, building groups, or other features;
ii. A subdivision of land;

iii. Development in accordance with Section 503(1.1) of the PA Municipalities Planning Code.

Lot – A parcel of land, used or set aside and available for use as the site of one or more buildings and any buildings accessory thereto or for any other purpose, in one ownership and not divided by a street, nor including any land within the ultimate right-of-way of a public or private street upon which said lot abuts, even if the ownership to such right-of-way is in the owner of the lot. A lot for the purpose of this Ordinance may or may not coincide with a lot of record.

Low Impact Development (LID) Practices – Practices that will minimize proposed conditions runoff rates and volumes, which will minimize needs for artificial conveyance and storage facilities.

Main Stem (Main Channel) – Any stream segment or other runoff conveyance used as a reach in the Neshaminy Creek hydrologic model.

Manning Equation (Manning Formula) – A method for calculation of velocity of flow (e.g., feet per second) and flow rate (e.g., cubic feet per second) in open channels based upon channel shape, roughness, depth of flow and slope. ‘Open channels’ may include closed conduits so long as the flow is not under pressure.

Municipal Engineer – A professional engineer licensed as such in the Commonwealth of Pennsylvania, duly appointed as the engineer for a municipality, planning agency or joint planning commission.

Municipality – Buckingham Township, Bucks County, Pennsylvania.
Natural Hydrologic Regime (see Hydrologic Regime)

Nonpoint Source Pollution – Pollution that enters a water body from diffuse origins in the watershed and does not result from discernible, confined, or discrete conveyances.

Nonstormwater Discharges – Water flowing in stormwater collection facilities, such as pipes or swales, which is not the result of a rainfall event or snowmelt.

NPDES – National Pollutant Discharge Elimination System, the federal government’s system for issuance of permits under the Clean Water Act, which is delegated to PADEP in Pennsylvania.

NRCS – Natural Resource Conservation Service (previously Soil Conservation Service).

Outfall – ’Point source’ as described in 40 CFR § 122.2 at the point where the municipality’s storm sewer system discharges to surface Waters of the Commonwealth.

Outlet – Points of water disposal to a stream, river, lake, tidewater or artificial drain.

Parent Tract – The parcel of land from which a land development or subdivision originates, determined from the date of municipal adoption of this ordinance.

Peak Discharge – The maximum rate of stormwater runoff from a specific storm event.

Penn State Runoff Model (PSRM) – The computer-based hydrologic model developed at the Pennsylvania State University.

Perennial Stream – A stream which contains water at all times except during extreme drought.

Pipe – A culvert, closed conduit, or similar structure (including appurtenances) that conveys stormwater.

Planning Commission – The planning commission of Buckingham Township.

Point Source – Any discernible, confined and discrete conveyance, including, but not limited to, any pipe, ditch, channel, tunnel, or conduit from which stormwater is or may be discharged, as defined in State regulations at 25 Pa. Code § 92.1.

Post Construction – Period after construction during which disturbed areas are stabilized, stormwater controls are in place and functioning and all proposed improvements in the approved land development plan are completed.

Predevelopment – (see Existing Condition)

Pretreatment – Techniques employed in stormwater BMPs to provide storage or filtering to trap coarse materials and other pollutants before they enter the system, but not necessarily designed to meet the volume requirements of Section 303.
Pervious Surface – A surface that allows the infiltration of water into the ground.

Project Site – The specific area of land where any Regulated Activities in the municipality are planned, conducted or maintained.

Qualified Professional -Any person licensed by the Pennsylvania Department of State or otherwise qualified by law to perform the work required by the Ordinance.

Rational Method – A rainfall-runoff relation used to estimate peak flow.

Recharge – The replenishment of groundwater through the infiltration of rainfall, other surface waters, or land application of water or treated wastewater.

Record Drawings – Original documents revised to suit the as-built conditions and subsequently provided by the Engineer to the Client. The Engineer reviews the Contractor’s as-built drawings against his/her own records for completeness, then either turns these over to the Client or transfers the information to a set of reproducibles, in both cases for the Client’s permanent records. Record drawings are not the same as record plans submitted for recording with the County in accordance with the PA Municipalities Planning Code (Act 247).

Redevelopment – Any development that requires demolition or removal of existing structures or impervious surfaces at a site and replacement with new impervious surfaces. Maintenance activities such as top-layer grinding and re-paving are not considered to be redevelopment. Interior remodeling projects and tenant improvements are also not considered to be redevelopment. Utility trenches in streets are not considered redevelopment unless more than 50 percent of the street width including shoulders is removed and re-paved.

Regulated Activities -Any earth disturbance activities or any activities that involve the alteration or development of land in a manner that may affect stormwater runoff.

Release Rate – The percentage of existing conditions peak rate of runoff from a site or subarea to which the proposed conditions peak rate of runoff must be reduced to protect downstream areas.

Repaving – Replacement of the impervious surface that does not involve reconstruction of an existing paved (impervious) surface.

Replacement Paving – Reconstruction of and full replacement of an existing paved (impervious) surface.

Residential Deck - An exterior floor, located on a residential lot, consisting of wood or composite boards, supported on at least two opposing sides by an adjacent structure, and/or posts, piers or other independent supports, with a minimum board spacing of ¼ inch.
Retention **Basin** – A structure in which stormwater is stored and not released during the storm event. Retention basins are designed for infiltration purposes, and do not have an outlet. The retention basin must infiltrate stored water in 4 days or less.

Retention Volume/Removed Runoff – The volume of runoff that is captured and not released directly into the surface Waters of the Commonwealth during or after a storm event.

Return Period – The probability an event will occur in any given year. Typically displayed as a whole number, e.g. 25-year event, and represents the inverse of the frequency of that event. For example, the 25-year return period rainfall gives the probability, 1/25 or 4%, which that size storm will occur in any given year.

Road Maintenance – Earth disturbance activities within the existing road cross-section, such as grading and repairing existing unpaved road surfaces, cutting road banks, cleaning or clearing drainage ditches and other similar activities.

Roof Drains – A drainage conduit or pipe that collects water runoff from a roof and leads it away from the structure.

Runoff – Any part of precipitation that flows over the land surface.

SALDO – Subdivision and land development ordinance.

Sediment – Soils or other materials transported by surface water as a product of erosion.

Sediment Pollution – The placement, discharge or any other introduction of sediment into the Waters of the Commonwealth.

Sedimentation – The process by which mineral or organic matter is accumulated or deposited by the movement of water or air.

Seepage Pit/Seepage Trench – An area of excavated earth filled with loose stone or similar coarse material, into which surface water is directed for infiltration into the underground water. More information on Seepage Pits may be found in the PA BMP Manual, December 2006, Chapter 6, Section 4.

Separate Storm Sewer System – A conveyance or system of conveyances (including roads with drainage systems, municipal streets, catch basins, curbs, gutters, ditches, man-made channels or storm drains) primarily used for collecting and conveying stormwater runoff.

Shallow Concentrated Flow – Stormwater runoff flowing in shallow, defined ruts prior to entering a defined channel or waterway.

Sheet Flow – A flow process associated with broad, shallow water movement on sloping ground surfaces that is not channelized or concentrated.
Soil Cover Complex Method – A method of runoff computation developed by the NRCS that is based on relating soil type and land use/cover to a runoff parameter called Curve Number (CN).

Source Water Protection Areas (SWPA) – The zone through which contaminants, if present, are likely to migrate and reach a drinking water well or surface water intake.

Special Protection Subwatersheds – Watersheds that have been designated in Pennsylvania Code Title 25 Environmental Protection, Chapter 93 Water Quality Standards as exceptional value (EV) or high quality (HQ) waters.

Spillway – A conveyance that is used to pass the peak discharge of the maximum design storm that is controlled by the stormwater facility.

State Water Quality Requirements – The regulatory requirements to protect, maintain, reclaim, and restore water quality under Title 25 of the Pennsylvania Code and the Clean Streams Law.

Storm Frequency – The number of times that a given storm ‘event’ occurs or is exceeded on the average in a stated period of years. See ‘Return Period’.

Storm Sewer – A system of pipes and/or open channels that convey intercepted runoff and stormwater from other sources, but excludes domestic sewage and industrial wastes.

Stormwater – The surface runoff generated by precipitation reaching the ground surface.

Stormwater Management Best Management Practices – Is abbreviated as BMPs or SWM BMPs throughout this Ordinance.

Stormwater Management Facility – Any structure, natural or man-made, that, due to its condition, design, or construction, conveys, stores, or otherwise affects stormwater runoff quality, rate or quantity. Typical stormwater management facilities include, but are not limited to, detention and retention basins, open channels, storm sewers, pipes, and infiltration structures.

Stormwater SWM Site Plan – The plan prepared by the Applicant or his representative indicating how stormwater runoff will be managed at the particular site of interest according to this ordinance.

Stream – Any jurisdictional stream or watercourse that has regulated activities imposed upon it by governing agencies including the Army Corps of Engineers and Pennsylvania Department of Environmental Protection.
Stream Buffer – The land area immediately adjacent to each side of a stream, measured perpendicular to and horizontally from the top-of-bank on both sides of a stream (see Top-of-bank), essential to maintaining water quality.

Stream Enclosure – A bridge, culvert, or other structure in excess of 100 feet in length upstream to downstream which encloses a regulated water of the Commonwealth.

Streambank Erosion – The widening, deepening, or headward cutting of channels and waterways, caused by stormwater runoff or bankfull flows.

Subarea (Subwatershed) – The smallest drainage unit of a watershed for which stormwater management criteria have been established in the Stormwater Management Plan.

Subdivision – The division or redivision of a lot, tract, or parcel of land by any means into two or more lots, tracts, parcels, or other divisions of land including changes in existing lot lines for the purpose, whether immediate or future, of lease, partition by the court for distribution to heirs or devisees, transfer of ownership, or building or lot development, provided the subdivision by lease of land for agricultural purposes into parcels of more than ten acres, not involving any new street or easement of access or any residential dwelling, shall be exempted.

Surface Waters of the Commonwealth – Any and all rivers, streams, creeks, rivulets, ditches, watercourses, storm sewers, lakes, dammed water, wetlands, ponds, springs, and all other bodies or channels of conveyance of surface waters, or parts thereof, whether natural or artificial, within or on the boundaries of the Commonwealth.

Swale – A low lying stretch of land that gathers or carries surface water runoff.

SWM Site Plan – The documentation of the stormwater management system to be used for a given development site, the contents of which are established in Section 402.

Timber Operations – See Forest Management.

Time-of-Concentration (Tc) – The time required for surface runoff to travel from the hydraulically most distant point of the watershed to a point of interest within the watershed. This time is the combined total of overland flow time and flow time in pipes or channels, if any.

Top-of-Bank – Highest point of elevation in a stream channel cross-section at which a rising water level just begins to flow out of the channel and over the floodplain.

Vegetated swale – A natural or man-made waterway, usually broad and shallow, covered with erosion-resistant grasses, used to convey surface water.

Vernal Pool – Seasonal depressional wetlands that are covered by shallow water for variable periods from winter to spring, but may be completely dry for most of the summer and fall.

Watercourse – A channel or conveyance of surface water having a defined bed and banks, whether natural or artificial, with perennial or intermittent flow.
Waters of the Commonwealth – Any and all rivers, streams, creeks, rivulets, ditches, watercourses, storm sewers, lakes, dammed water, wetlands, ponds, springs, and all other bodies or channels of conveyance of surface and underground water, or parts thereof, whether natural or artificial, within or on the boundaries of the Commonwealth.

Watershed – Region or area drained by a river, watercourse, or other body of water, whether natural or artificial.

Wet Basin – Pond for urban runoff management that is designed to detain urban runoff and always contains water.

Wetland – Areas that are inundated or saturated by surface water or groundwater at a frequency and duration sufficient to support, and that under normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions, including swamps, marshes, bogs and similar areas. A wetland is an ecosystem that depends on constant or recurrent, shallow inundation or saturation at or near the surface of the substrate. The minimum essential characteristics of a wetland are recurrent, sustained inundation or saturation at or near the surface and the presence of physical, chemical, and biological features reflective of recurrent, sustained inundation or saturation. Common diagnostic features of wetlands are hydrology, hydric soils and hydrophytic vegetation. Any area containing all three elements shall be defined as wetlands as shall any area that meets the definition of a wetland in either 1) The United States Army Corps of Engineers Technical Report Y87-1, Corps of Engineers Wetlands Delineation Manual; or 2) The United States Environmental Protection Agency Wetlands Identification Delineation Manual, Volume I, Rational, Wetland Parameters, and Overview of Jurisdictional Approach, Volume II, Field Methodology, as most recently updated or modified; or 3) The Pennsylvania Department of Environmental Protection Wetlands Identification and Delineation, Chapter 105 Dam Safety and Waterways Management Rules and Regulations, as most recently updated or modified. Where a difference between the foregoing criteria exists, the most restrictive criteria will be used in any particular case. For the purposes of this definition and for its application to this Ordinance most restrictive criteria shall mean the criteria which effects preservation of the most extensive area of Wetlands.

Section 203. Carbonate (Limestone) Geology Definitions

For the purposes of this Ordinance, as it relates to Carbonate Limestone Geology, the following words or phrases shall have the meanings given in the following definitions:

Agricultural Pursuits – Activities including but not limited to the use of the land for farming, tilling, and cultivation; horticulture; floriculture, viticulture; forestry; excavation for farm buildings; ponds, etc. and animal husbandry, AND which individually or in combination equals or exceeds a total of a minimum of ten (10) acres in area on any one parcel; AND that the land on which the activity is to occur will be altered or changed to a degree which may influence or change the natural recharge potential to alter or influence the quality of groundwater reserves.

Aquifer – Any water-bearing soil or rock formation that is capable of yielding quantities of groundwater suitable as a potable water supply.

Caverns – A subterranean cavity or cave produced by dissolution of limestone or dolomite.
Closed Depression – Remnants of sinkholes that have partially filled with soil by erosion and settlement of the sinkhole walls. Generally, they are found as shallow, dish-shaped depressions on the land surface in areas of carbonate geologic formations.

Disappearing Streams – Streams that empty completely into a sinkhole or cavern.

Environmental Assessment Report – Shall consist of the information required on a report to assess the impact of the development on the environment.

Fault – The surface of rock rupture along which there has been differential movement of the rock on either side.

Fissure – A fracture or crack in rock along which there is a distinct separation.

Fracture Traces – Linear topographic depressions or lines of depression less than one mile in length revealing faults, joints, or fissures in the bedrock. These linear features are characterized by increased permeability, along which the solution of carbonate rocks is intensified and hence along which groundwater movement is concentrated. See lineaments.

Geotechnical Consultant – A registered Professional Geologist who renders technical advice in the disciplines of Geology, Hydrogeology, Water Resources Management and any other recognized groundwater resources planning and management fields. The technical competence of the individual or firm shall be demonstrated through educational accomplishments, applicable experience, or accreditation from a National Organization in the related discipline.

Ghost Lakes – Small bodies of water which occur in and occasionally around closed depressions or sinkholes after periods of heavy precipitation. They may form from slow permeability of soils, rise in groundwater table, or from the creation of a natural liner of impermeable or slowly permeable clays or soils in the depression.

Groundwater – Water contained in a subsurface, water-saturated layer of soil or rock.

Hazardous Material – Product or waste, or combination of substances that because of the quantity, concentration, physical, chemical or infectious characteristics, if not properly treated, stored, transported, used or disposed of, or otherwise managed would create a potential threat to the groundwater resources of the area through direct or indirect introduction into the subsurface environment that includes the soil and all subsequent materials located below.

Hydrogeologist – A registered Professional Geologist or geotechnical consultant with documented educational accomplishments and supportive experience to provide technical expertise in the area of groundwater resources planning.

Joint – A large and relatively planar fracture in a rock across which there is no relative displacement of the two sides.

Lineaments – Linear topographic depressions or lines of depression longer than one mile in length revealing faults, joints or fissures in the bedrock. These linear features are characterized by increased permeability, along which the solution of carbonate rock is intensified and hence along which groundwater movement is concentrated. See fracture traces.

Pinnacles – Tall, slender spires of carbonate bedrock. Pinnacles are formed from the chemical dissolution of carbonate rocks along planes of weakness (joints, fractures).

Surface Pinnacles - Formations that protrude above the natural grade.

Subsurface Pinnacles - Formations that exist below the surface of the ground.

Prohibited Use – Any activity/land use identified in the Table of Prohibited Uses.

Secondary Containment Structures/Devices – Structures and devices including but not limited to such things as floor drains, double tank enclosures, impervious pads and pavements, collection barrels, building enclosures, self-contained drainage systems, detention basins, filters, separators or other devices, or other Best Management Practices.

Sinkholes – Funnel shaped or steep sided depressions in the land surface that are caused by the dissolution and collapse or subsidence of the roofs of subterranean caverns in carbonate geologic foundations.

Solution Channels – Solution-widened joints or fractures occurring in carbonate bedrock. They can vary from less than one inch to several feet in width and often form a network of channels through the carbonate bedrock.

Stratum – A single sedimentary bed or layer of a formation that consists of approximately the same kind of rock material.

Strike of Bedrock – The direction or beating of a surface or subsurface stratum of the inclined bedrock in relation to the horizontal surface. The strike is perpendicular to the dip or slope of the stratum.

Wellfield Impact Assessment – A detailed technical report prepared by a professional hydrogeologist or other qualified professional which will provide technical evidence that the land use activities proposed on a particular site will not adversely affect the quality of groundwater on-site or off-site.
ARTICLE III. STORMWATER MANAGEMENT

Section 301. General Requirements

A. Applicants proposing Regulated Activities in Buckingham Township that do not fall under the exemption criteria shown in Section 106 shall submit a Stormwater Management (SWM) Site Plan consistent with the Neshaminy Creek and Delaware River South Watershed SWM Plans to the Municipality for review. The SWM criteria of this Ordinance shall apply to the total proposed development even if development is to take place in stages. Preparation and implementation of an approved SWM Site Plan is required. No Regulated Activities shall commence until the Municipality issues written approval of a SWM Site Plan, which demonstrates compliance with the requirements of this Ordinance.

B. SWM Site Plans approved by the Municipality, in accordance with Article IV, shall be on-site throughout the duration of the Regulated Activity.

C. The Municipality may, after consultation with the Pennsylvania Department of Environmental Protection (PADEP), approve measures for meeting the state water quality requirements other than those in this Ordinance, provided that they meet the minimum requirements of, and do not conflict with, state law including but not limited to the Clean Streams Law.

D. For all regulated earth disturbance activities, Erosion and Sediment (E&S) Control Best Management Practices (BMPs) shall be designed, implemented, operated, and maintained during the Regulated Earth Disturbance Activities (e.g., during construction) to meet the purposes and requirements of this Ordinance and to meet all requirements under Title 25 of the Pennsylvania Code and the Clean Streams Law. Various BMPs and their design standards are listed in the Erosion and Sediment Pollution Control Program Manual, No. 363-2134-008 (April 15, 2000), as amended and updated.

E. For all Regulated Activities, implementation of the volume controls in Section 303 of this Ordinance is required.

F. Impervious areas:

1. The measurement of impervious areas shall include all of the impervious areas in the total proposed development even if development is to take place in stages.

2. For development taking place in stages, the entire development plan must be used in determining conformance with this Ordinance.

G. The existing points of concentrated drainage that discharge onto adjacent properties shall not be altered in any manner which could cause property damage without permission of the adjacent property owners (s) and shall be subject to any applicable discharge criteria specified in this Ordinance.
H. All Regulated Activities shall include such measures as necessary to:

1. Protect health, safety, and property;

2. Meet the water quality goals of this Ordinance by implementing measures to:
 a. Minimize disturbance to floodplains, wetlands, and wooded areas.
 b. Create, maintain, repair or extend riparian buffers.
 c. Avoid erosive flow conditions in natural flow pathways.
 d. Minimize thermal impacts to waters of this Commonwealth.
 e. Disconnect impervious surfaces (i.e. Disconnected Impervious Areas, DIAs) by directing runoff to pervious areas, wherever possible. See Appendix F for detail on DIAs.

I. Infiltration BMPs shall be spread out, made as shallow as practicable, and located to maximize the use of natural on-site infiltration features while still meeting the other requirements of this Ordinance.

J. The design of all facilities over karst shall include an evaluation of measures to minimize the risk of adverse effects. The Applicant shall comply with all provisions of the Township Limestone Ordinance, as amended.

K. Storage facilities shall completely drain both the volume control and rate control capacities over a period of time not less than 24 and not more than 72 hours from the end of the design storm. Exceptions to the 72-hour maximum release time may be approved by the Township in cases where re-use of captured stormwater is proposed and additional storage capacity is provided.

L. The design storm volumes to be used in the analysis of peak rates of discharge should be obtained from the Precipitation-Frequency Atlas of the United States, Atlas 14, Volume 2, Version 3.0, U.S. Department of Commerce, National Oceanic and Atmospheric Administration (NOAA), National Weather Service, Hydrometeorological Design Studies Center, Silver Spring, Maryland. NOAA’s Atlas 14 can be accessed at http://hdsc.nws.noaa.gov/hdsc/pfds/

M. For all regulated activities, SWM BMPs shall be designed, implemented, operated, and maintained to meet the purposes and requirements of this Ordinance and to meet all requirements under Title 25 of the Pennsylvania Code, the Clean Streams Law, and the Storm Water Management Act.

Section 302. Permit Requirements by Other Governmental Entities

Approvals issued and actions taken under this Ordinance do not relieve the Applicant of the responsibility to secure required permits or approvals for activities regulated by any other code, law, regulation or ordinance.

Section 303. Volume Control

Volume controls will mitigate increased runoff impacts, protect stream channel morphology, maintain groundwater recharge, and contribute to water quality improvements. Stormwater runoff volume control methods are based on the net change in runoff volume for the five-year storm event.

Volume controls shall be implemented using the Design Storm Method in subsection A, below, or the Simplified Method in subsection B below. For Regulated Activities where earth disturbance activities or other development activities area equal to or less than one (1) acre, this Ordinance establishes no preference for either methodology; therefore, the applicant may select either methodology on the basis of economic considerations, the intrinsic limitations of the procedures associated with each methodology, and other factors. All regulated activities greater than one (1) acre must use the Design Storm Method.

A. Design-Storm Method (Any Regulated Activity): This method requires detailed modeling based on site conditions. For modeling assumptions refer to Section 305.A.

1. Post-development total runoff should not be increased from pre-development total runoff for all storms equal to or less than the 5-year 24-hour duration precipitation.

2. The following applies in order to estimate the increased volume of runoff for the 5-year 24-hour duration precipitation event:

To calculate the runoff volume (cubic feet) for existing site conditions (pre-development) and for the proposed developed site conditions (post-development), it is recommended to use the soil cover complex method. Table B-3 in Ordinance Appendix B is available to guide a qualified professional and/or an applicant to calculate the stormwater runoff volume. The calculated volume shall be either reused, evapotranspired, or infiltrated through structural or nonstructural means.

Soil Cover Complex Method:

Step 1: Runoff (in) = \(Q = \frac{(P - 0.2S)}{(P + 0.8S)} \)

\(P = 5\text{-year Rainfall (in)} \)

\(S = \frac{1000}{CN} - 10, \text{ the potential maximum retention (including initial abstraction, Ia)} \)

Step 2: Runoff Volume (Cubic Feet) = \(Q \times \text{Area} \times \frac{1}{12} \)

\(Q = \text{Runoff (in)} \)

Area = SWM Area (sq ft)
B. **Simplified Method (Regulated activities less than or equal to 1 acre):**

Stormwater facilities shall be provided to capture 20 cubic feet (150 gallons) of runoff for every 100 square feet of impervious surface area created by the regulated activity. This volume of runoff is to be considered the “capture volume” and shall be managed as follows:

1. At least twenty percent (20%) of the capture volume shall be infiltrated via infiltration-type structural BMPs (See Appendix B, Table B-6).

2. Forty percent (40%) of the capture volume shall be either reused, evapotranspired, or infiltrated through nonstructural BMPs (See Appendix B, Table B-5) or additional structural BMPs inclusive of infiltration-type BMP’s.

3. The remaining forty percent (40%) of the capture volume shall be slowly released from the site through the use of structural and nonstructural BMPs (See Appendix B, Tables B-5 and B-6). The release of runoff shall occur between 24 to 72 hours after the rainfall events begin.

C. **Stormwater Control Measures:**

The applicant must demonstrate how the required volume is controlled through Stormwater Best Management Practices (BMPs) which shall provide the means necessary to capture, reuse, evaporate, transpire or infiltrate the total runoff volume.

1. If natural resources exist on the site, the applicant (if required to submit a SWM Site Plan) shall determine the total acreage of protected area where no disturbance is proposed. The acreage of the protected area shall be subtracted from the total site area and not included in the stormwater management site area acreage used in determining the volume controls. The total acreage of protected resource land shall be based upon the Natural Resource Protection Standards listed in Article 31 of the Township’s Zoning Ordinance, as last amended.

 \[
 \text{Stormwater Management Site Area} = \\
 \{\text{Total Site Area (for both pre and post development conditions) – Protected Area}\}
 \]

2. Calculate the volume controls provided through nonstructural BMPs. Table B-5 in Ordinance Appendix B is recommended as guidance.

3. Volume controls provided through nonstructural BMPs should be subtracted from the required volume to determine the necessary structural BMPs.

 \[
 \text{Required Volume Control (ft}^3) - \text{Nonstructural Volume Control (ft}^3) = \text{Requirement (ft}^3)
 \]
4. Calculate the volume controls provided through structural BMPs. Table B-6 in Ordinance Appendix B is recommended as guidance. See PA BMP manual Chapter 6 for description of the BMPs.

5. Infiltration BMPs intended to receive runoff from developed areas shall be selected based on the suitability of soils and site conditions (see Table B-6 in Ordinance Appendix B for a list of Infiltration BMPs). Infiltration BMPs shall be constructed on soils that have the following characteristics:

1. A minimum soil depth of twenty-four (24") inches between the bottom of the infiltration BMPs and the top of bedrock or seasonally high water table.

2. An infiltration rate sufficient to accept the additional stormwater load and dewater completely as determined by field tests. A minimum of 0.2 inches/hour (in/hr) shall be utilized and for acceptable rates a safety factor of 50% shall be applied for design purposes (e.g., for soil which measured 0.4 in/hr, the BMP design shall use 0.2 in/hr to insure safe infiltration rates after construction).

3. All open-air infiltration facilities shall be designed to completely infiltrate runoff volume within three (3) days (72 hours) from the start of the design storm.

6. Soils – A soils evaluation of the project site shall be required to determine the suitability of infiltration facilities. All regulated activities are required to perform a detailed soils evaluation by a qualified design professional which at minimum address’ soil permeability, depth to bedrock, and subgrade stability. The general process for designing the infiltration BMP shall be:

a. Analyze hydrologic soil groups as well as natural and man-made features within the site to determine general areas of suitability for infiltration practices. In areas where development on fill material is under consideration, conduct geotechnical investigations of sub-grade stability; infiltration may not be ruled out without conducting these tests.

b. Provide field tests such as double ring infiltrometer or hydraulic conductivity tests (at the level of the proposed infiltration surface) to determine the appropriate hydraulic conductivity rate. Percolation tests are not recommended for design purposes.

c. Design the infiltration structure based on field determined capacity at the level of the proposed infiltration surface and based on the safety factor of 50%.

d. If on-lot infiltration structures are proposed, it must be demonstrated to the municipality that the soils are conducive to infiltrate on the lots identified.

e. An impermeable liner will be required in detention basins where the possibility of groundwater contamination exists. A detailed hydrogeologic investigation may be required by the municipality.
Section 304. Stormwater Peak Rate Control and Management Districts

Peak rate controls for large storms, up to the 100-year event, is essential in order to protect against immediate downstream erosion and flooding. The following peak rate controls have been determined through hydrologic modeling of the Neshaminy Creek and Delaware River South watersheds.

A. Standards for managing runoff from each subarea in the Neshaminy Creek Watershed for the 2-, 5-, 10-, 25-, 50-, and 100-year design storms are shown in Table 304.1. Development sites located in each of the management districts must control proposed development conditions runoff rates to existing conditions runoff rates for the design storms in accordance the following:

Table 304.1
Peak Rate Runoff Control Standards by Stormwater Management Districts
In The Neshaminy Creek Watershed.

<table>
<thead>
<tr>
<th>District</th>
<th>Design Storm Post-Development</th>
<th>Design Storm Pre-Development</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2-year</td>
<td>1-year</td>
</tr>
<tr>
<td></td>
<td>5-year</td>
<td>5-year</td>
</tr>
<tr>
<td></td>
<td>10-year</td>
<td>10-year</td>
</tr>
<tr>
<td></td>
<td>25-year</td>
<td>25-year</td>
</tr>
<tr>
<td></td>
<td>50-year</td>
<td>50-year</td>
</tr>
<tr>
<td></td>
<td>100-year</td>
<td>100-year</td>
</tr>
<tr>
<td>B</td>
<td>2-year</td>
<td>1-year</td>
</tr>
<tr>
<td></td>
<td>5-year</td>
<td>2-year</td>
</tr>
<tr>
<td></td>
<td>10-year</td>
<td>5-year</td>
</tr>
<tr>
<td></td>
<td>25-year</td>
<td>10-year</td>
</tr>
<tr>
<td></td>
<td>50-year</td>
<td>25-year</td>
</tr>
<tr>
<td></td>
<td>100-year</td>
<td>50-year</td>
</tr>
</tbody>
</table>
B. Standards for managing runoff from each subarea in the Delaware River South Watershed for the 2-, 5-, 10-, 25-, 50-, and 100-year design storms are shown in Table 304.2. Development sites located in each of the management districts must control proposed development conditions runoff rates to existing conditions runoff rates for the design storms in accordance the following:

Table 304.2
Peak Rate Runoff Control Standards by Stormwater Management Districts
In The Delaware River South Watershed.

<table>
<thead>
<tr>
<th>District</th>
<th>Design Storm Post-Development</th>
<th>Design Storm Pre-Development</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2-year</td>
<td>1-year</td>
</tr>
<tr>
<td></td>
<td>5-year</td>
<td>5-year</td>
</tr>
<tr>
<td></td>
<td>10-year</td>
<td>10-year</td>
</tr>
<tr>
<td></td>
<td>25-year</td>
<td>25-year</td>
</tr>
<tr>
<td></td>
<td>50-year</td>
<td>50-year</td>
</tr>
<tr>
<td></td>
<td>100-year</td>
<td>100-year</td>
</tr>
<tr>
<td>B</td>
<td>2-year</td>
<td>1-year</td>
</tr>
<tr>
<td></td>
<td>5-year</td>
<td>2-year</td>
</tr>
<tr>
<td></td>
<td>10-year</td>
<td>5-year</td>
</tr>
<tr>
<td></td>
<td>25-year</td>
<td>10-year</td>
</tr>
<tr>
<td></td>
<td>50-year</td>
<td>50-year</td>
</tr>
<tr>
<td></td>
<td>100-year</td>
<td>100-year</td>
</tr>
</tbody>
</table>

C. General – Proposed conditions rates of runoff from any Regulated Activity shall not exceed the peak release rates of runoff from existing conditions for the design storms specified on the Stormwater Management District Plan, as amended (Ordinance Appendix D) and in this section of the Ordinance.

D. District Boundaries – The boundaries of the Stormwater Management Districts are shown on official maps and are available for inspection at the municipal office and county planning offices. The exact location of the Stormwater Management District boundaries as they apply to a given development site shall be determined by mapping the boundaries using the two-foot topographic contours (or most accurate data required) provided as part of the SWM Site Plan.

E. Sites Located in More Than One District – For a proposed development site located within two or more stormwater management district category subareas, the peak discharge rate from any subarea shall meet the Management District Criteria for the district in which the discharge is located.

F. Off-Site Areas – When calculating the allowable peak runoff rates, developers do not have to account for runoff draining into the subject development site from an off-site area. On-site drainage facilities shall be designed to safely convey off-site flows through the development site.

G. Site Areas – The stormwater management site area is the only area subject to the management district criteria. Non-impacted areas or non-regulated activities bypassing the stormwater management facilities would not be subject to the management district criteria.
Section 305. Calculation Methodology

A. For the purposes of predevelopment flow rate and volume determination, the land shall be considered as “meadow” good condition, unless the natural groundcover generates a lower curve number or Rational ‘C’ value (i.e., forest). However, if farmland area is preserved with the development plan and the farmland area is intended to be farmed during and after development, the pre and post development ground cover for that portion of the development site may be considered as “Fallow – Crop residue cover (CR) – Good condition” if the post development area is tributary to either a sedimentation basin or a stormwater management facility.

B. In all plans and designs for stormwater management systems and facilities submitted to the Township Engineer for approval, stormwater peak discharge and runoff shall be determined through the use of the Soil Cover Complex Method as set forth in Urban Hydrology for Small Watersheds, Technical Release No. 55, with specific attention given to antecedent moisture conditions, flood routing, and peak discharge specifications included therein and in Hydrology National Engineering Handbook, Section 4, both by the US Department of Agriculture, Natural Resources Conservation Service (Soil Conservation Service). Note that the use of TR-55 with many of the natural system-based approaches and practices recommended by this Ordinance requires that calculations be performed on a detailed small sub-area basis. The Township Engineer may permit the use of the Rational Method for calculation of runoff for regulated activities of 10 acres or less and for the design of storm structures. The design engineer shall request, in writing, authorization to utilize the Rational Method, from the Township Engineer.

C. All calculations consistent with this ordinance using the Soil Cover Complex Method shall use the appropriate design rainfall depths for the various return period storms according to the National Oceanic and Atmospheric Administration (NOAA) Atlas 14 rain data corresponding to the Doylestown rain gage, seen in Table B-1 in Ordinance Appendix B. The SCS Type II rainfall curve from NOAA is found on Figure B-1 in Ordinance Appendix B. This data may also be directly retrieved from the NOAA Atlas 14 website: hdsc.nws.noaa.gov/hdsc/pfds/orb/pa_pfds.html. If a hydrologic computer model such as PSRM or HEC-1 / HEC-HMS is used for stormwater runoff calculations, then the duration of rainfall shall be 24 hours.

TABLE 305.1 Acceptable Computation Methodologies
For Stormwater Management Plans

<table>
<thead>
<tr>
<th>Method</th>
<th>Method Developed By</th>
<th>Applicability</th>
</tr>
</thead>
<tbody>
<tr>
<td>TR-20 or commercial package</td>
<td>USDA - NRCS</td>
<td>When use of full model is desirable or necessary</td>
</tr>
<tr>
<td>based on TR-20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TR-55 or commercial package</td>
<td>USDA - NRCS</td>
<td>Applicable for plans within the models limitations</td>
</tr>
<tr>
<td>based on TR-55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEC – 1</td>
<td>U.S. Army Corps of Engineers</td>
<td>When full model is desirable or necessary</td>
</tr>
<tr>
<td>PSRM</td>
<td>Penn State University</td>
<td>When full model is desirable or necessary</td>
</tr>
<tr>
<td>Rational Method or commercial</td>
<td>Emil Kuiching (1889)</td>
<td>For sites less than 10 acres</td>
</tr>
<tr>
<td>package based on Rational Method</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other methods</td>
<td>Various</td>
<td>As approved by the municipal engineer</td>
</tr>
</tbody>
</table>
D. All calculations using the Rational Method shall use rainfall intensities consistent with appropriate times-of-concentration for overland flow and return periods from NOAA Atlas 14, Volume 2 Version 2.1. Times-of-concentration for overland flow shall be calculated using the methodology presented in Chapter 3 of Urban Hydrology for Small Watersheds, NRCS, TR-55 (as amended or replaced from time to time by NRCS). Times-of-concentration for channel and pipe flow shall be computed using Manning’s equation.

E. Times of concentration for overland flow shall be calculated using the methodology presented in Chapter 3 of Urban Hydrology for Small Watersheds, NRCS, TR-55 (as amended or replaced from time to time by NRCS). Times of concentration for channel and pipe flow shall be computed using Manning’s equation. The maximum length of sheet flow over unpaved surfaces shall be 50 to 100 feet in calculating the time of concentration for a watershed. The theoretical maximum length of 300 feet shall be utilized only in unique situations such as uniformly sloped, smoothly paved parking areas. If the drainage area is small (less than 1 Acre) and sheet flow length is greater than 10% of the total hydraulic travel distance, the designer shall:

a. Re-check sheet flow Tt before accepting the calculated Tc Value,

b. If sheet flow Tt is greater than 80% of Tc, then sheet flow area may be “non-contributing area”, especially if the sheet flow is from very flat slopes (1 to 2%).

c. The calculations may need to be revised to compute the peak discharge using a smaller drainage area and total runoff volume from the total drainage area.

F. Runoff Curve Numbers (CN) for both existing and proposed conditions to be used in the soil cover complex method shall be based on Table B-4 in Ordinance Appendix B.

G. Runoff coefficients (C) for both existing and proposed conditions for use in the Rational Method shall be consistent with Table B-7 in Ordinance Appendix B.

H. In performing the stormwater calculations, all those areas to be disturbed during construction shall be assumed to be reduced one Hydrologic Soil Group (HSG) category level during post development runoff calculations (i.e., HSG B is reduced to HSG C, and so forth).

I. The Manning equation is preferred for one-dimensional, gradually-varied, open channel flow. In other cases, appropriate, applicable methods should be applied, however, early coordination with the municipality is necessary.

J. Outlet structures for stormwater management facilities shall be designed to meet the performance standards of this Ordinance using the generally accepted hydraulic analysis technique or method of the municipality.

K. The design of stormwater detention facilities shall be verified by routing the design storm hydrograph through these facilities using the Storage-Indication (Modified PULS) Method. The design storm hydrograph shall be computed using a calculation method that produces a full hydrograph. The Township may approve the use of any generally accepted full hydrograph approximation technique that shall use a total runoff volume that is consistent with the volume from a method that produces a full hydrograph.
L. The SWM Site Plan shall be developed with a defined Construction Sequence. The Qualified Professional shall schedule the construction activities to ensure that the peak discharge rates and runoff volumes during construction meets the requirements of this Ordinance at all times. Appropriate BMP’s shall be provided to allow construction to commence in a timely manner to minimize exposed earth disturbance.

Section 306. General Design Requirements for SWM Facilities

A. Increased stormwater runoff which may result from Regulated Activities listed above shall be controlled by permanent stormwater runoff control measures that will provide the required standards.

B. Unless otherwise specified in this Ordinance, the maximum slope of any stormwater management or best management practice facility earthen embankment shall be three (3) horizontal to one (1) vertical, unless the difference in elevation between the outlet structure invert and the top of berm exceeds eight (8) feet. If the elevation difference exceeds eight (8) feet, the maximum slope shall be four (4) horizontal to one (1) vertical. The top or toe of any slope shall be located a minimum of five (5) feet from any property line. Whenever possible, the side slopes and basin shape shall conform to the natural topography.

C. The minimum top width of detention, retention, wet pond, or any other basin berm that stores stormwater volumes of 10,000 CF or greater at the 100-year water surface elevation shall be ten (10) feet. For basins with a storage volume less than 10,000 CF, the minimum berm width shall be five (5) feet. A cutoff trench (key-way) of impervious material shall be provided under all embankments that require fill material. The cutoff trench shall be a minimum of eight (8) feet wide, two (2) feet deep, and have side slopes of 1:1.

D. All stormwater management facilities shall be provided with an emergency spillway or overflow device. Emergency spillways discharging over embankment fill shall be constructed of reinforced concrete checkerblock to protect the berm against erosion. The checkerblocks shall be backfilled with topsoil and seeded. The checkerblock lining shall extend to the toe of the fill slope on the outside of the berm, and shall extend to an elevation 3 feet below the spillway crest on the inside of the berm. The spillway material shall also be provided on the side slopes of the spillway and extend to the top of the berm. The emergency spillway shall be designed to accommodate the flow from the 100-year storm event considering “post development” flows into the basin (Q100 inflow)

E. Vegetated spillways may be utilized for spillways constructed entirely on undisturbed ground (i.e., not discharging over fill) if the designer can demonstrate that flow velocities and shear stresses through the spillway will not cause erosion of the spillway. A dense cover of vegetation shall be rapidly established in such spillways by sodding or seeding with a geotextile anchor. Such a vegetated spillway must be stabilized before runoff is directed to the basin.

F. The minimum total freeboard shall be one (1) foot. Freeboard is to be provided such that six (6) inches is provided between the 100 year water surface elevation and the invert of the emergency spillway, and six (6) inches is provided between the design flow elevation in the emergency spillway and the top of the settled stormwater management facility earthen embankment.
G. Stormwater management facility outlet piping shall be Type B (PENNDOT) reinforced O-Ring concrete pipe, unless under a collector or arterial roadway, in which case the pipe shall be Type A (PENNDOT). A minimum of two (2) concrete anti-seep collars shall be provided for each pipe outlet. Pre-cast concrete collars shall have a minimum thickness of eight (8) inches; field poured collars shall have a minimum thickness of twelve (12) inches. Collars may not be installed within two (2) feet of pipe joints. Collars must be designed to project a minimum of two (2) feet around the outside perimeter of the pipe. Maximum collar spacing shall be fourteen (14) times the minimum projection of the collar measured perpendicular to the pipe.

H. All detention/retention basin embankment material shall be placed in maximum of eight (8) inch lifts compacted to a minimum of 95% of Modified Proctor Density as established by ASTM D-1557. Prior to proceeding to the next lift, the compaction shall be checked by the Township Engineer or Soils Engineer. Compaction tests shall be run on the leading and the trailing edge of the berm as well as along the top of the berm.

I. Energy dissipating devices shall be placed at all basin inflow points and outfalls.

J. Perforated distribution piping for infiltration structures shall be high density, corrugated polyethylene pipe (HDPE) – (smooth bore).

K. SWM facilities shall be in place and functioning prior to the creation of any additional impervious surfaces on the site. As-built drawings of the basin(s) shall be submitted to the Township for review. The basin shall not be considered functional until it is proved by the Applicant that the basin meets the volume requirements and the outflow characteristics of the original design of the SWM Plan. Runoff shall not be directed to an infiltration structure until all tributary drainage areas are stabilized.

L. Pipe outlets shall permit complete drainage of all detained water, unless the stormwater management facility is designed as a retention basin, wet pond or provides for stormwater renovation with constructed wetlands.

M. Stone gabion baskets shall not be used in the construction of stormwater management facilities, retaining walls, etc.

N. Retaining walls shall not be specified for use within the 100 year water surface elevation area of any stormwater management or best management facility or as part of any embankment or cut slope that is appurtenant to the construction of the stormwater management or best management practice facility.

O. Access to facilities shall be provided for maintenance and operation. This access shall be a cleared access that is, when possible, at least fifteen (15) feet wide. Proximity of facilities to public rights-of-way shall be encouraged in order to minimize the length of access ways. Multiple accesses shall be encouraged for major facilities. The Applicant shall provide driveways, curb depressions, sidewalk aprons, easements and/or rights-of-way for access to stormwater management facilities as deemed necessary by the Township. The maximum slope of the access path shall be 10:1.
P. In order to promote the safety of the residents of the Township, the Township may determine that fencing is required around all or portions of the stormwater management and best management practice facilities. When required by the Township, the fencing shall provide a suitable barrier at least four (4) feet in height of material approved by the Township, such as split rail fencing with wire backing.

Q. Any facilities that constitute water obstructions (e.g., culverts, bridges, outfalls, or stream enclosures), shall be designed in accordance with Chapter 105 and may require a permit from PA DEP.

R. Any existing or proposed drainage conveyance facility and/or channel that does not fall under Chapter 105 Regulations, that is located within the development site must be able to convey, without damage to the drainage structure or roadway, runoff from the 50-year design storm. Conveyance facilities to or exiting from stormwater management facilities (i.e. detention basins) shall be designed to convey the design flow to or from that structure. Roadway crossings located within designated floodplain areas must be able to convey runoff from a 100-year design storm. Any facility located within a PennDOT right-of-way must meet PennDOT minimum design standards and permit submission requirements, unless a greater standard is listed in this Ordinance and/or the Buckingham Township Zoning Ordinance.

S. All outlet structures shall be located within the embankment for purposes of maintenance, access, safety and aesthetics. Below grade structures (standard inlet boxes, manholes, etc.) shall not project above the ground surface.

T. The minimum diameter of any free-flowing orifice shall be 3 inches. Innovative low flow or anti-clog devices with free-flowing orifices less than 3 inches are permitted upon review and approval by the Township.

U. All inflow headwalls and outlet structures shall be provided with slanted trash racks with a maximum grid opening of 4” by 4”, constructed of aluminum. The trash rack shall be slanted at 45°, be able to withstand loading of 500 lbs and be hinged at the top for cleaning.

V. All Stormwater Management Facilities and BMPs shall be provided with a Landscaping Plan that is designed to effectively naturalize the area to become an integral and harmonious element in the natural landscape.

W. Water Wells shall not be permitted to be used to contribute to, or to maintain water surfaces in any Constructed Treatment Wetland (Extended Detention Wetland Systems), Retention Basin (Wet Pond) or any other designed Permanent Pool unless such use is specifically approved by the Township.

Section 307. Other Requirements

A. Hot Spots

1. The use of infiltration BMPs is prohibited on hot spot land use areas. Examples of hot spots are listed in Ordinance Appendix G.
2. Stormwater runoff from hot spot land uses shall be pretreated. In no case may the same BMP be employed consecutively to meet this requirement. Guidance regarding acceptable methods of pre-treatment is located in Appendix G.

B. West Nile Guidance Requirements

All wet basin designs shall incorporate biologic controls consistent with the West Nile Guidance found in Appendix H.

C. During Construction Release Rates

1. Peak discharges and runoff volumes occurring during construction from all regulated activities that exceed 1000 square feet shall comply with the appropriate sections above, with the following additions:

a. For purposes of calculating required detention storage during land disturbance, peak discharges and discharge volumes shall be calculated based upon the runoff coefficients for bare soils and maximum impervious surfaces during the maximum period and extent of disturbance. Controls shall insure that the “During Construction” peak discharge rate and discharge volume shall not exceed those peak discharges and discharge volumes before development. It should be understood that detention storage during the period of land disturbance and prior to establishment of permanent cover may require additional facilities on a temporary basis. Such measures shall be located so as to preserve the natural soil infiltration capacities of the planned infiltration bed areas.

b. During land disturbance, wherever soils, topography, cut and fill or grading requirements, or other conditions suggest substantial erosion potential, the township shall require that the entire volume of all storms up to a 2-year storm for the disturbed areas be retained on site and that special sediment trapping facilities (such as check dams, etc.) be installed.

D. Carbonate (Limestone) Geology Requirements

1. Land grading in areas underlain by carbonate geology, the construction of buildings, building additions or structures such as swimming pools that directly or indirectly diminish the natural flow of stormwater or springs, shall be prohibited unless the Applicant proves there is no negative impact to the groundwater or groundwater recharge. Grading on a site underlain by carbonate geology shall be kept to a minimum. If grading is to be performed, it shall be performed with the following standards:

a. Existing drainage patterns must be maintained.

b. No alteration (land disturbance greater than 500 square feet) shall be made to the run-off pattern.

c. French drains are prohibited near existing surface drainage channels.
d. Surface drainage channels shall not be affected by grading for and construction of roadways, driveways, structures, separate storm sewer systems, detention basins or other development improvements.

2. The creation of retention/detention basins, stormwater management facilities or ponds within or within two hundred (200) feet of a carbonate geologic formation shall be constructed, in addition to standards set forth in this Ordinance, in accordance with the following requirements:

a. No detention basin shall be located closer than the specified distances from the following features:

<table>
<thead>
<tr>
<th>Feature</th>
<th>Setback Requirement (ft.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sinkholes (rim)</td>
<td>100</td>
</tr>
<tr>
<td>Closed Depressions (rim)</td>
<td>100</td>
</tr>
<tr>
<td>Lineaments</td>
<td>50</td>
</tr>
<tr>
<td>Fracture Traces</td>
<td>50</td>
</tr>
<tr>
<td>Caverns</td>
<td>100</td>
</tr>
<tr>
<td>Ghost Lakes</td>
<td>100</td>
</tr>
<tr>
<td>Disappearing Streams</td>
<td>100</td>
</tr>
<tr>
<td>Surface or Subsurface Pinnacles</td>
<td>25</td>
</tr>
<tr>
<td>Fissures</td>
<td>50</td>
</tr>
<tr>
<td>Faults</td>
<td>50</td>
</tr>
</tbody>
</table>

b. The Applicant shall determine the strike of the rock for the location of the detention basins.

c. The Applicant shall establish two (2) trenches perpendicular to the strike of the bedrock. The trenches shall be ten (10) feet from the outside edge of the stormwater management facility. The dimension of the proposed stormwater facility between the parallel trenches shall not exceed one hundred (100) feet measured from the outside edge of the stormwater management facility. Trenching shall be dug to a depth of two (2) feet below the intended floor of the basin.

d. The Applicant shall notify the Township Engineer at least forty-eight (48) hours prior to trenching activity taking place. The Applicant shall not begin trenching until the Township Engineer is on-site to observe the trenching.

e. Stormwater management facilities shall not be located in an area where there are surface pinnacles, nor where subsurface pinnacles are encountered during trenching tests nor where they are known to exist.
f. Outflow from stormwater management facilities shall not empty into or be directed to any of the following carbonate features:

 i. Sinkholes
 ii. Closed Depressions
 iii. Lineaments
 iv. Fracture Traces
 v. Caverns
 vi. Ghost Lakes
 vii. Disappearing Streams
 viii. Surface or Subsurface Pinnacles
 ix. Fissures
 x. Faults

g. Stormwater Management Facilities shall be designed so that they return to normal conditions within thirty-six (36) hours after the termination of the storm, unless the Township Engineer finds that downstream conditions warrant revising the design criteria for stormwater release.

h. Seepage pits, retention basins, ponds and other BMPs which may potentially impact the carbonate geology shall be prohibited. The use of infiltration or permanent pool facilities may be deemed unacceptable by the Township Engineer, governing body or appointed representative, if the improvement has the potential to contaminate groundwater supplies or cause damage to other natural resources or property.

3. Prior to locating stormwater management facilities, drainage channels, or French drains, the Applicant shall perform test borings (or alternate testing procedures, such as resistivity testing, ground penetrating radar, and/or other procedures or combinations approved by the Township) of the site in areas where the facilities are proposed. The test borings shall be laid out in a grid on fifty (50) foot centers under the proposed facilities. All boring holes shall be closed with concrete at the conclusion of the test procedures in accordance with applicable wellhead protection standards.
4. Test borings shall be conducted in accordance with American Society for Testing Materials D-1586, standard method for “penetration test and split barrel sampling of soils.” Where intact rock and consolidated material is encountered, samples shall be secured in accordance with ASTM D-2113 for “diamond core drilling for site investigation.” The location and depth of each test boring shall be satisfactory to the geotechnical engineer providing the report required below. Test boring results shall be recorded on boring logs to include all information required in ASTM D-1586. Coordinates shall be provided for all test boring locations and shall be based on the Pennsylvania State Plane Coordinate system. All test information including location shall be included in the report provided to the Township. Boring samples shall be obtained and bottled in accordance with ASTM D-1586. An interpretation of test borings shall be provided by a professional geotechnical engineer licensed in the state of Pennsylvania and shall include a report of findings and recommendations with regard to building and site development construction requirements. The Applicant shall comply with the recommendations as found in the professional geotechnical engineer’s report.

5. All drainage on the site shall be channeled away from the carbonate features referenced below. French drains are also prohibited within one hundred (100) feet of these features.
 a. Sinkholes
 b. Closed Depressions
 c. Lineaments
 d. Fracture Traces
 e. Caverns
 f. Ghost Lakes
 g. Disappearing Streams
 h. Surface of Subsurface Pinnacles
 i. Fissures
 j. Faults

6. Prior to installation of underground transmission lines and pipelines, auger borings (four (4) inch minimum) shall be made along all proposed underground conduit utility lines, wastewater lines, water lines, pipelines, and stormwater and wastewater lines at an interval of fifty (50) feet. These borings shall be drilled to a minimum of two (2) feet below bottom of the pipe or conduit. Pipelines and conduit shall be laid out so that they do not intersect rock surface pinnacles, sinkholes, fissures, lineaments, faults, fracture traces, or caverns.

7. A dike of clay or other suitable material shall be constructed across the width of the trench at intervals of twenty (20) feet or less along all underground conduits, utility lines, wastewater lines, water lines, pipelines, and stormwater and wastewater lines.
8. Ghost Lakes (closed depressions) may not be disturbed. They shall not be regraded, nor shall new construction or excavation be permitted within them.

9. All drainage areas that contribute to disappearing streams and ghost lakes shall be assigned a pre-development discharge rate of “zero” and shall be subtracted out of the total site drainage area when comparing pre-development and post development rates and volumes.

E. **Runoff Pollution Control Standards**

1. For Regulated Activities that create greater than 1000 square feet of impervious surface area, the following reduction in loading rates shall be achieved for all stormwater management facilities:

 a. Total Phosphorus removal - 85%

 b. Total Nitrogen removal –50%

 c. Total Suspended Solids– 85%

2. In order to meet the above standards, the Applicant shall construct Stormwater Management Facilities with BMPs that provide the sufficient nutrient reductions. A number of BMPs may be installed in series to meet the minimum standards listed above. The Applicant shall provide an Analysis of Water Quality Impacts from Developed Land, with the appropriate worksheets, as specified in the Pennsylvania Stormwater Best Management Practices Manual.

F. **Thermal Control Standards**

1. For Regulated Activities that create greater than 1000 square feet of impervious surface area, there shall be no more than a two degree temperature (°C) change in any streams located within or downstream of the development site when the development site is located in a coldwater fishery and/or a trout stocking stream watershed.

2. In order to meet the above standards, the Applicant shall construct Stormwater Management Facilities with BMPs that provide the sufficient temperature reductions. A number of BMPs may be installed in series to meet the minimum standards listed above. The Applicant shall demonstrate, by either thermal modeling calculations or observed data, that the proposed Best Management Practices meet the objectives of the Ordinance.
3. The following are the Stream Classifications for those streams or tributaries located within the Township, as determined by PADEP under Pennsylvania Code Chapter 93, Title 25 classifications:

a. Paunacussing – High Quality – Cold water fishery (HQ-CWF)
b. Delaware River/Pidcock Creek – Cold water fishery – Migratory fishery (CWF – MF)
c. Watson Creek – Cold water fishery (CWF)
d. Mill Creek – Warm water fishery/migratory fishery (WWF-MF)
e. Neshaminy – Trout stocking fishery (TSF)
f. Pine Run – Warm water fishery (WWF)
ARTICLE IV. STORMWATER MANAGEMENT (SWM) SITE PLAN REQUIREMENTS

Section 401. General Requirements

For any of the activities regulated by this Ordinance, the preliminary or final approval of subdivision and/or land development plans, the issuance of any building or occupancy permit, the commencement of any earth disturbance, or activity may not proceed until the Property Owner or Applicant or his/her agent has received written approval of a SWM Site Plan from the municipality, an approval of an adequate Erosion and Sediment (E&S) Control Plan review from the Bucks County Conservation District, and a NPDES Permit for Stormwater Discharges Associated with Construction Activities (proposed Regulated Activities over 1 Area) from the Pennsylvania Department of Environmental Protection.

Section 402. SWM Site Plan Requirements

The SWM Site Plan shall consist of a general description of the project, including calculations, maps, and plans. A note on the maps shall refer to the associated computations and E&S Control Plan by title and date. The cover sheet of the computations and E&S Control Plan shall refer to the associated maps by title and date. All SWM Site Plan materials shall be submitted to the municipality in a format that is clear, concise, legible, neat, and well organized; otherwise, the SWM Site Plan shall not be accepted for review and shall be returned to the Applicant. All materials shall be provided to the Township in both paper and electronic format (PDF).

The following items shall be included in the SWM Site Plan:

A. General

1. General description of the project including plan contents described in Section 402.B.

2. General description of proposed SWM techniques to be used for SWM facilities.

3. Complete hydrologic and hydraulic computations for all SWM facilities.

4. All reviews and letters of adequacy from the Conservation District for the Erosion & Sedimentation Plan as required by [municipality], county or state regulations.

5. A general description of proposed nonpoint source pollution controls.

6. The SWM Site Plan Application and completed fee schedule form and associated fee for all regulated activities not already paying fees by under the SALDO regulations. (Ordinance Appendix C-1).

7. The SWM Site Plan Checklist (Ordinance Appendix C-2).

8. Appropriate sections from the municipalities’ other applicable local ordinances shall be followed in preparing the SWM Site Plan.
B. SWM Site Plan shall provide the following information;

1. The overall stormwater management concept for the project.

2. A determination of natural site conditions and stormwater management needs. This shall include, but not be limited to:
 a. Site Features, based on a field survey of the project, shall include:
 1) The location of the project relative to highways, municipal boundaries or other identifiable landmarks.
 2) The locations of all existing and proposed utilities, sanitary sewers, and water lines on site and to within fifty (50) feet of property lines.
 3) Proposed structures, roads, paved areas, and buildings.
 4) The total tract boundary and size with distances marked to the nearest foot and bearings to the nearest degree.
 5) Plan and profile drawings of all SWM BMP’s, including drainage structures, pipes, open channels, and swales. At a minimum this shall include pre-and post-drainage area maps, an overall post construction stormwater management plan, stormwater details sheets. All design details and plan and profile drawings shall be drawn to scale.
 6) Landscape plans (if proposing bio-retention facilities, low impact development, bioretention, vegetative basins or other facilities where vegetation is a component of the BMP design) shall be provided and shall include, at a minimum, the location of all aquatic, emergent and upland plantings, specifications and/or typical installation details for all plant material, a plant list (including the botanical name, common name, quantity, root type, special remarks, etc.), and installation schedule (e.g., April 1st to June 15th). The Landscape Plan for all Regulated Activities that do not meet the SWM Site Plan exception requirements shall be prepared by a Registered Landscape Architect.
 7) The locations and minimum setback distances of existing and proposed on-lot wastewater facilities and water supply wells.
 8) The location of all erosion and sediment control facilities.
 9) The location of proposed septic tank infiltration areas and wells in cases where groundwater recharge measures such as seepage pits, beds or trenches are proposed.
b. Natural Site Conditions:

1) An Existing Resource and Site Analysis Map (ERSAM) showing environmentally sensitive areas including, but not limited to:
 - steep slopes,
 - ponds,
 - lakes,
 - streams,
 - wetlands,
 - hydric soils,
 - hydrologic soil groups A and B,
 - vernal pools,
 - stream buffers,
 - open channels,
 - existing recharge areas,
 - all vegetation required by the Township’s Zoning Ordinance to be preserved, and
 - floodplains
 The area of each of these sensitive areas shall be calculated and should be consistent with the runoff volume calculation Section 303.C.1.

2) A detailed site evaluation for projects proposed in areas of frequent flooding, karst topography, and other environmentally sensitive areas, such as brownfields and source water protection areas. Any geologic assessment of the effects of runoff on sinkholes and other karst features specified in this ordinance shall be prepared by a Professional Geologist.

3) Existing and proposed contour lines (2 ft). Spot elevations shall be provided along the boundary of the site where proposed improvements are located with 25 feet of the property line or when surface runoff is directed towards the property line.

4) The total extent of the drainage area upstream from the site and all down gradient receiving channels, swales and waters to which stormwater runoff or drainage will be discharged.

c. Stormwater runoff design computations and documentation as specified in this Ordinance, or as otherwise necessary to demonstrate the project’s compliance with the requirements of this Ordinance, including the requirements in Section 301.
d. The effect of the project (in terms of runoff volumes, water quality, and peak flows) on surrounding properties and aquatic features and on any existing stormwater conveyance system that may be affected by the project.

e. Photographs of all existing drainage features within 50-feet of the site, including the locations of all existing/proposed discharge points, shall be provided.

3. The format of the Plan shall include the following;

a. The expected project time schedule.

b. The name of the development, the name, address and telephone number of the owner of the property, and the name and address of the individual or firm preparing the plan.

c. The date of submission and/or the plan preparation date. All revisions to the SWM Site plan shall be noted in the revision blocks of all plan sheets.

d. A graphic and written scale of one (1") inch equals no more than fifty (50') feet. For tracts of twenty (20) acres or more, the scale shall be one (1") inch equals no more than one hundred (100') feet provided that the engineer provides sufficient detail to construct the proposed SWM facilities. All plan information shall be legible.

e. A north arrow.

f. A location plan, at a scale of one (1") inch equals eight hundred (800') feet.

g. An access easement around all stormwater management facilities is required that would provide ingress to and egress from a public right-of-way. The size of the easement shall commensurate with the maintenance and access requirements determined in the design of the BMP.

h. A key map showing all existing man-made features beyond the property boundary that would be affected by the project.

i. A detailed Construction Sequence.

j. A note on the plan indicating the location and responsibility for maintenance of stormwater management facilities. All facilities shall meet the performance standards and design criteria specified in this ordinance.

k. The following signature block for the Design Engineer: “I, (Design Engineer- Registration Number), on this date (date of signature), hereby certify that the SWM Site Plan meets all design standards and criteria of The (Neshaminy CreekWatershed or Delaware River South Watershed) Act 167 Stormwater Management Ordinance and Plan."
l. A statement, signed by the Applicant, acknowledging that any revision to the approved SWM Site Plan must be approved by the municipality and that a revised E&S Plan must be submitted to the Conservation District.

m. For Regulated Activities located within 200 feet of the Buckingham Carbonate Valley, the following certification block shall be provided on the SWM Site Plan: “I, [Design Engineer - Registration Number], on this date [date of signature], hereby certify that the SWM Site Plan has been prepared to meet all design standards and criteria of the Township’s Limestone Ordinance, as amended, and have been designed to minimize the impact on said features.”

4. A soil erosion and sediment control plan, where applicable, as prepared for and submitted to the Bucks County Conservation District.

5. The SWM Site Plan shall include an Operations & Maintenance (O&M) Plan for all existing and proposed physical stormwater management facilities, as well as schedules and costs for O&M activities. This plan shall address long-term ownership and responsibilities for O&M.

6. A Declaration of Adequacy and Highway Occupancy Permit from PennDOT District Office when utilization of a PennDOT storm drainage system is proposed.

Section 403. Plan Submission

The municipality requires submission of a complete SWM Site Plan, as specified in this Ordinance.

A. Proof of application or documentation of required permit(s) or approvals for the programs listed below shall be part of the plan:

1. NPDES Permit for Stormwater Discharges from Construction Activities.

2. Any other permit under applicable state or federal regulations.

B. Five (5) copies of the SWM Site Plan shall be submitted to the following agencies:

1. Three (3) copies to the municipality accompanied by the requisite municipal review fee, as specified in this Ordinance.

2. Two (2) copies to the County Conservation District.

C. Any submissions to the agencies listed above that are found to be incomplete shall not be accepted for review and shall be returned to the Applicant with a notification in writing of the specific manner in which the submission is incomplete.

D. Additional copies shall be submitted as requested by the municipality or PADEP.
Section 404. Stormwater Management (SWM) Site Plan Review

A. The SWM Site Plan shall be reviewed by the municipal designee for consistency with the provisions of this Ordinance. After review, the municipal designee shall provide a written recommendation for the municipality to approve or disapprove the SWM Site Plan. If it is recommended to disapprove the SWM Site Plan, the municipal designee shall state the reasons for the disapproval in writing. The municipal designee also may recommend approval of the SWM Site Plan with conditions and, if so, shall provide the acceptable conditions for approval in writing. The SWM Site Plan review and recommendations shall be completed within the time allowed by the Municipalities Planning Code for reviewing subdivision plans.

B. The municipality will notify the applicant in writing within 45 days whether the SWM Site Plan is approved or disapproved. If the SWM Site Plan involves a Subdivision and Land Development Plan, the notification period shall be provided in accordance with the Subdivision and Land Development Ordinance Requirements.

Section 405. Modification of Plans

A modification to a submitted SWM Site Plan that involves a change in SWM BMPs or techniques, or that involves the relocation or redesign of SWM BMPs, or that is necessary because soil or other conditions are not as stated on the SWM Site Plan, as determined by the municipality, shall require a resubmission of the modified SWM Site Plan in accordance with this Article.

Section 406. Resubmission of Disapproved SWM Site Plans

A disapproved SWM Site Plan may be resubmitted, with the revisions addressing the municipality’s concerns, to the municipality in accordance with this Article. The applicable review fee must accompany a resubmission of a disapproved SWM Site Plan.

Section 407. Authorization to Construct and Term of Validity

The municipality’s approval of an SWM Site Plan authorizes the regulated activities contained in the SWM Site Plan for a maximum term of validity of 5 years following the date of approval. The Municipality may specify a term of validity shorter than 5 years in the approval for any specific SWM Site Plan. Terms of validity shall commence on the date the Municipality signs the approval for an SWM Site Plan. If an approved SWM Site Plan is not completed according to Section 407 within the term of validity, the municipality may consider the SWM Site Plan disapproved and may revoke any and all permits. SWM Site Plans that are considered disapproved by the municipality shall be resubmitted in accordance with Section 406 of this Ordinance.
ARTICLE V. INSPECTIONS

Section 501. Inspections

A. The municipality shall inspect all phases of the installation of the Best Management Practices (BMPs) and/or stormwater management (SWM) facilities as deemed appropriate by the municipality.

B. During any stage of the work, if the municipality determines that the BMPs and/or stormwater management facilities are not being installed in accordance with the approved SWM Site Plan, the municipality shall revoke any existing permits or other approvals and issue a cease and desist order until a revised SWM Site Plan is submitted and approved, as specified in this Ordinance and until the deficiencies are corrected.

C. A final inspection of all BMPs and/or stormwater management facilities may be conducted by the municipality to confirm compliance with the approved SWM Site Plan prior to the issuance of any Occupancy Permit.

D. The applicant and/or developer shall be responsible for providing as-built plans of all SWM BMPs included in the approved SWM Site Plan. The as-built plans and an explanation of any discrepancies, which were reviewed and received approval by the municipality, shall be submitted to the municipality.

E. The as-built submission shall include a certification of completion signed by a Qualified Professional verifying that all SWM BMPs have been constructed according to the approved plans and specifications. If any Qualified Professionals contributed to the construction plans, they must sign and seal the completion certificate.
ARTICLE VI. FEES AND EXPENSES

Section 601. Municipal Stormwater Management (SWM) Site Plan Review and Inspection Fee

Fees shall be established by the municipality to cover plan review and construction inspection costs incurred by the municipality. All fees shall be paid by the Applicant at the time of SWM Site Plan submission. A review and inspection fee schedule shall be established by resolution of the municipal governing body based on the size of the Regulated Activity and based on the municipality’s costs for reviewing SWM Site Plans and conducting inspections pursuant to Section 501. The municipality shall periodically update the review and inspection fee schedule to ensure that review costs are adequately reimbursed.

Section 602. Expenses Covered by Site Plan Review and Inspection Fees

The fees required by this Ordinance (unless otherwise waived by the municipality) shall, at a minimum, cover:

A. Administrative costs.
B. The review of the Stormwater (SWM) Site Plan by the municipality or its agent.
C. The review of As-built Drawings.
D. The site inspections.
E. The inspection of SWM facilities and drainage improvements during construction.
F. The final inspection at the completion of the construction of the SWM facilities and drainage improvements presented in the SWM Site Plan.
G. Any additional work required to enforce any permit provisions regulated by this Ordinance, correct violations, and assure proper completion of stipulated remedial actions.
ARTICLE VII. MAINTENANCE RESPONSIBILITIES

Section 701. Performance Guarantee

A. For all Regulated activities, the Municipality shall require a financial guarantee from the Applicant for the timely installation and proper construction of all SWM facilities. The financial guarantee shall be provided to the Township prior to the Approval of the SWM Site Plan.

B. Without limitation as to other types of financial security which the Township may approve, which approval shall not be unreasonably withheld, Federal or Commonwealth chartered lending institution irrevocable letters of credit and restrictive or escrow accounts in such lending institutions shall be deemed acceptable financial security for the purposes of securing the completion of the required improvements.

C. Such financial security shall be posted with a bonding company or Federal or Commonwealth chartered lending institution chosen by the Applicant, provided such bonding company or lending institution is authorized to conduct such business within the Commonwealth of Pennsylvania.

D. The amount of financial security to be posted for completion of the required improvements shall be equal to 110% of the cost of completion estimated as of 90 days following the date of scheduled for completion by the developer. Annually the Township may adjust the amount of the financial security by comparing the actual cost of the improvements which have been completed and the estimated cost for the completion of the remaining improvements as of the expiration of the 90th day after either the original date scheduled of completion or a rescheduled date of completion. Subsequent to said adjustment, the Township may require the Applicant to post additional security in order to assure that the financial security equals said 110 percent. Any additional security shall be posted by the developer in accordance with this section.

E. The amount of financial security required shall be based upon an estimate of the cost of completion of the required improvements, submitted by an Applicant and prepared by a professional engineer licensed as such in the Commonwealth of Pennsylvania and certified by such engineer to be a fair and reasonable estimate of such cost. The Township, upon recommendation of the Township engineer, may refuse to accept such estimate for good cause shown. If the Applicant and the Township are unable to agree upon an estimate, the procedures set forth in the Pennsylvania Municipalities Planning Code, Article V, Section 509 (g) shall be followed.

F. If the Applicant requires more than one year from the date of posting of the financial security to complete the required improvements, the amount of financial security may be increased by an additional ten percent (10%) for each one year period beyond the first anniversary date from posting of financial security or to an amount not exceeding one hundred ten percent (110%) of the cost of completing the required improvements as re-established on or about the expiration of the preceding one year period by using the above bidding procedure.
Section 702. Responsibilities for Operations and Maintenance (O&M) of Stormwater Facilities and BMPs

A. For Regulated Activities that create greater than 1000 square feet of impervious surface area, the owner of any land upon which stormwater facilities and BMPs will be placed, constructed, or implemented, as described in the stormwater facility and BMP O&M plan, shall record the following documents in the Office of the Recorder of Deeds for Bucks County, within sixty (60) days of approval of the stormwater facility and BMP O&M plan by the Municipality:

1. The O&M plan, or a summary thereof,
2. O&M agreements under Section 704, and
3. Easements under Section 705.

B. The municipality may suspend or revoke any approvals granted for the project site upon discovery of failure on the part of the owner to comply with this section.

C. The following items shall be included in the Stormwater Facility and BMP O&M Plan:

1. Map(s) of the project area, in a form that meets the requirements for recording at the offices of the Recorder of Deeds of Bucks County, and shall be submitted on 24-inch x 36-inch sheets. The contents of the maps(s) shall include, but not be limited to:
 b. Clear identification of the location and nature of stormwater facilities and BMPs.
 c. The location of the project site relative to highways, municipal boundaries or other identifiable landmarks.
 d. Existing and final contours at intervals of two (2) feet, or others as appropriate.
 e. Existing streams, lakes, ponds, or other bodies of water within the project site area.
 f. Other physical features including flood hazard boundaries, sinkholes, streams, existing drainage courses, and areas of natural vegetation to be preserved.
 g. The locations of all existing and proposed utilities, sanitary sewers, and water lines on site and within 50 feet of property lines of the project site.
 h. Proposed final changes to the land surface and vegetative cover, including the type and amount of impervious area that would be added.
 i. Proposed final structures, roads, paved areas, and buildings, and
j. A twenty (20')-foot-wide access easement around all stormwater facilities and BMPs that would provide ingress to and egress from a public right-of-way.

2. A description of how each stormwater facility and BMP will be operated and maintained, and the identity and contact information associated with the person(s) responsible for O&M.

3. The name of the project site, the name and address of the owner of the property, and the name of the individual or firm preparing the plan, and

4. A statement, signed by the facility owner, acknowledging that the stormwater facilities and BMPs are fixtures that can be altered or removed only after approval by the municipality.

D. The Stormwater Facility and BMP O&M Plan for the project site shall establish responsibilities for the continuing O&M of all stormwater facilities and BMPs, as follows:

1. If a plan includes structures or lots which are to be separately owned and in which streets, sewers and other public improvements are to be dedicated to the municipality, stormwater facilities and BMPs may also be offered for dedication to and maintained by the municipality.

2. If a plan includes O&M by single ownership, or if sewers and other public improvements are to be privately owned and maintained, the O&M of stormwater facilities and BMPs shall be the responsibility of the owner or private management entity.

E. The municipality shall make the final determination on the continuing O&M responsibilities. The municipality reserves the right to accept or reject the O&M responsibility for any or all of the stormwater facilities and BMPs.

F. Facilities, areas, or structures used as BMPs shall be enumerated as permanent real estate appurtenances and recorded as deed restrictions or conservation easements that run with the land.

G. The O&M Plan shall be recorded as a restrictive deed covenant that runs with the land.

H. The municipality may take enforcement actions against an owner for any failure to satisfy the provisions of this Article and this Ordinance.

Section 703. Municipal Review of Stormwater Facilities and BMP Operations and Maintenance (O&M) Plan

A. The municipality shall review the Stormwater Facilities and BMP O&M Plan for consistency with the purposes and requirements of this ordinance, and any permits issued by PADEP.
B. The municipality shall notify the Applicant in writing whether the Stormwater Facility and BMP O&M Plan is approved.

C. The municipality shall require a “Record Drawing” of all stormwater facilities and BMPs.

Section 704. Operations and Maintenance (O&M) Agreement for Privately Owned Stormwater Facilities and BMPs

A. The owner shall sign an O&M agreement with the municipality covering all stormwater facilities and BMPs that are to be privately owned. The O&M agreement shall be transferred with transfer of ownership. The agreement shall be substantially the same as the agreement in Ordinance Appendix A.

B. Other items may be included in the O&M agreement where determined necessary to guarantee the satisfactory O&M of all stormwater controls and BMPs. The O&M agreement shall be subject to the review and approval of the municipality.

C. The owner is responsible for the O&M of the SWM BMPs. If the owner fails to adhere to the O&M Agreement, the municipality may perform the services required and charge the owner appropriate fees. Nonpayment of fees may result in a lien against the property.

Section 705. Stormwater Management Easements

A. The owner must obtain all necessary real estate rights to install, operate, and maintain all stormwater facilities in the SWM Site Plan.

B. The owner must provide the municipal easements, or other appropriate real estate rights, to perform inspections and maintenance for the preservation of stormwater runoff conveyance, infiltration, and detention areas. The
ARTICLE VIII. PROHIBITIONS

Section 801. Prohibited Discharges

A. Any drain or conveyance, whether on the surface or subsurface, that allows any non-stormwater discharge, including sewage, process wastewater, and wash water to enter the waters of the Commonwealth is prohibited.

B. No person shall allow, or cause to allow, discharges into surface waters of this Commonwealth which are not composed entirely of stormwater, except (1) as provided in Subsection C below, and (2) discharges allowed under a state or federal permit.

C. The following discharges are authorized unless they are determined to be significant contributors to pollution to the waters of the Commonwealth:

1. Discharges from firefighting activities,
2. Potable water sources including water line flushing,
3. Irrigation drainage,
4. Air conditioning condensate,
5. Springs,
6. Water from crawl space (not basement) pumps,
7. Flows from riparian habitats and wetlands,
8. Uncontaminated water from foundations or from footing drains,
9. Lawn watering,
10. De-chlorinated swimming pool discharges (per Pennsylvania Department of Environmental Protection (PADEP) requirements),
11. Uncontaminated groundwater,
12. Water from individual residential car washing, and/or
13. Routine external building wash down (which does not use detergents or other compounds)

D. In the event the Township determines that any of the discharges identified in Subsection C, above, significantly contribute to pollution of waters of the Commonwealth, or in the event the Township is so notified by PADEP, the Township will notify the person responsible that such discharges must cease.

E. Upon receipt of such notice from the Township, the person responsible for prohibited discharges shall have a reasonable time, as determined by the Township, to cease the discharge, consistent with the degree of pollution caused by the discharge.

F. No person shall connect, reconfigure, or in any way modify an existing Municipal Separate Storm Sewer Systems without the expressed written consent of the Township.
Section 802. Roof Drains

Roof drains and sump pumps shall discharge to infiltration or vegetative BMPs and to the maximum extent practicable satisfy the criteria for disconnected impervious areas (DIAs). Roof drains, sump pumps and other private drainage facilities shall not be connected to any Municipal Separate Storm Sewer System and shall not be permitted within the area of the associated Drainage or Utility Easement.

Section 803. Alteration of SWM BMPs

A. No person shall modify, remove, fill, landscape, or alter any Stormwater Management (SWM) Best Management Practices (BMPs), facilities, areas, or structures unless it is part of an approved maintenance program and written approval of the municipality has been obtained.

B. No person shall place any structure, fill, landscaping, or vegetation into a stormwater facility or BMP or within a drainage easement which would limit or alter the functioning of the stormwater facility or BMP without the written approval of the municipality.
ARTICLE IX. ENFORCEMENT AND PENALTIES

Section 901. Right-of-Entry

A. Upon presentation of proper credentials, duly authorized representatives of the municipality may enter at reasonable times upon any property within the municipality to inspect the implementation, condition, or operation and maintenance of the stormwater facilities or Best Management Practices (BMPs) in regard to any aspect governed by this Ordinance.

B. Landowners with stormwater facilities and BMPs on their property shall allow persons working on behalf of the municipality ready access to all parts of the premises for the purposes of determining compliance with this Ordinance.

C. Persons working on behalf of the municipality shall have the right to temporarily locate on any stormwater facility or BMP in the Municipality such devices as are necessary to conduct monitoring and/or sampling of the discharges from such stormwater facilities or BMP.

Section 902. Inspection

Stormwater Management (SWM) Best Management Practices (BMPs) should be inspected for proper operation by the landowner, or the owner’s designee (including the Municipality for dedicated and owned facilities), according to the following list of minimum frequencies:

A. Annually for the first 5 years,
B. Once every 3 years thereafter,
C. During or immediately after the cessation of a 10-year or greater storm, and/or
D. As specified in the Operations and Maintenance (O&M) agreement.

It shall be the landowner’s responsibility to notify the Township of any required maintenance outside of the routine maintenance contemplated by the Operations and Maintenance (O&M) agreement. The landowner shall also notify and acquire all appropriate permits and approvals from all agencies having jurisdiction over the proposed activities, including but not limited to the Bucks County Conservation District and PaDEP.

Section 903. Enforcement

All inspections regarding compliance with the Stormwater Management (SWM) Site Plan and this Ordinance shall be the responsibility of the Municipality.

A. Whenever the Municipality finds that a person has violated a prohibition or failed to meet a requirement of this Ordinance, the Municipality may order compliance by written notice to the responsible person. Such notice may, without limitation, require the following remedies:

1. Performance of monitoring, analyses, and reporting;
2. Elimination of prohibited connections or discharges;
3. Cessation of any violating discharges, practices, or operations;
4. Abatement or remediation of stormwater pollution or contamination hazards and the restoration of any affected property;
5. Payment of a fine to cover administrative and remediation costs;
6. Implementation of stormwater facilities and Best Management Practices (BMPs); and
7. Operation and Maintenance (O&M) of stormwater facilities and BMPs.

B. Such notification shall set forth the nature of the violation(s) and establish a time limit for correction of these violations(s). Said notice may further advise that, if applicable, should the violator fail to take the required action within the established deadline, the work will be done by the Municipality and the expense may be charged to the violator.

C. Failure to comply within the time specified may subject a violator to the penalty provisions of this Ordinance. All such penalties shall be deemed cumulative and shall not prevent the Municipality from pursuing any and all other remedies available in law or equity.

Section 904. Suspension and Revocation of Permits and Approvals

A. Any building, land development, or other permit or approval issued by the municipality may be suspended or revoked, in whole or in part, by the Municipality for:

1. Noncompliance with or failure to implement any provision of the permit;
2. A violation of any provision of this ordinance; or
3. The creation of any condition or the commission of any act during construction or development which constitutes or creates a hazard or nuisance, pollution or which endangers the life, health, or property of others.

B. A suspended permit may be reinstated by the Municipality when:

1. The Municipality has inspected and approved the corrections to the stormwater facilities and BMPs or the elimination of the hazard or nuisance, and;
2. The Municipality is satisfied that all applicable violations in this Ordinance have been corrected.

C. Any permit or approval that has been revoked by the Municipality cannot be reinstated. The Applicant may apply for a new permit under the procedures outlined of this Ordinance.

Section 905. Penalties

A. Civil Enforcement - Any person, partnership, or corporation who shall violate any of the provisions of this Ordinance shall, upon being found liable in a civil enforcement proceeding commenced by the township, pay a judgment of not more than $500 plus all court costs,
including reasonable attorney fees incurred by the township as a result thereof. No judgment shall commence or be imposed, levied or payable until the date of the determination of a violation by the district justice. If the defendant neither pays nor timely appeals the judgment, the township may enforce the judgment pursuant to the applicable rules of civil procedure. Each day that a violation continues shall constitute a separate violation unless the district justice determining that there has been a violation further determines that there was a good faith basis for the person, partnership or corporation violating the ordinance to have believed that there was no such violation, in which event there shall be deemed to have been only one such violation until the fifth day following the date of the determination of a violation by the district justice and thereafter each day that a violation continues shall constitute a separate violation. Note: See Section 515.3 of the Pennsylvania Municipalities Planning Code, 53 P.S. § 10515.3.

B. In addition, the Municipality may institute injunctive, mandamus or any other appropriate action or proceeding at law or in equity for the enforcement of this ordinance. Any court of competent jurisdiction shall have the right to issue restraining orders, temporary or permanent injunctions, mandamus, or other appropriate forms of remedy or relief.

Section 906. Appeals

A. As per the Pennsylvania Municipalities Planning Code (MPC), Section 909.1(9), any person aggrieved by any action pursuant to this Ordinance may appeal to the Buckingham Township Zoning Hearing Board within thirty (30) days of that action.

B. Any person aggrieved by any decision of Buckingham Township Board of Supervisors, relevant to the provisions of this Ordinance may appeal to the County Court of Common Pleas in the County where the activity has taken place within thirty (30) days of the municipal decision.
BUCKINGHAM TOWNSHIP STORMWATER MANAGEMENT
ORDINANCE ENACTMENT

Enacted and ordained this 11th day of May, 2011

BUCKINGHAM TOWNSHIP
BOARD OF SUPERVISORS

BY: [Signature]
 Jon Forest

BY: [Signature]
 Maggie Rash

BY: [Signature]
 Henry R. Rowan

ATTEST: [Signature]
 Township Manager

I hereby certify that the foregoing Ordinance was advertised in the Intelligencer on May 4, 2011, a newspaper of general circulation in the Municipality and was duly enacted and approved as set forth at a regular meeting of the Municipality's governing body held on May 11, 2011.

[Signature]
 Secretary
APPENDIX A

SAMPLE STORMWATER CONTROLS AND BEST MANAGEMENT PRACTICES OPERATIONS AND MAINTENANCE AGREEMENT

THIS AGREEMENT, made and entered into this __________ day of __________, 20__, by and between ____________________________________, (hereinafter the “Landowner”), and BUCKINGHAM TOWNSHIP, Bucks County, Pennsylvania, (hereinafter “Municipality”);

WITNESSETH

WHEREAS, the Landowner is the owner of certain real property as recorded by deed in the land records of ________________ County, Pennsylvania, Deed Book __________ at Page ______, (hereinafter “Property”).

WHEREAS, the Landowner is proceeding to build and develop the Property; and

WHEREAS, the Stormwater Controls and BMP Operations and Maintenance Plan approved by the Municipality (hereinafter referred to as the “Plan”) for the property identified herein, which is attached hereto as Appendix A and made part thereof, as approved by the Municipality, provides for management of stormwater within the confines of the Property through the use of Best Management Practices (BMPs); and

WHEREAS, the Municipality, and the Landowner, his successors and assigns, agree that the health, safety, and welfare of the residents of the Municipality and the protection and maintenance of water quality require that on-site stormwater Best Management Practices be constructed and maintained on the Property; and

WHEREAS, for the purposes of this agreement, the following definitions shall apply:

BMP – “Best Management Practice;” activities, facilities, designs, measures or procedures used to manage stormwater impacts from land development, to protect and maintain water quality and groundwater recharge and to otherwise meet the purposes of the Buckingham Township Stormwater Management Ordinance, including but not limited to infiltration trenches, seepage pits, filter strips, bioretention, wet ponds, permeable paving, rain gardens, grassed swales, forested buffers, sand filters and detention basins.
WHEREAS, the Municipality requires, through the implementation of the Plan, that stormwater management BMPs as required by said Plan and the Buckingham Township Stormwater Management Ordinance be constructed and adequately operated and maintained by the Landowner, his successors and assigns, and

NOW, THEREFORE, in consideration of the foregoing promises, the mutual covenants contained herein, and the following terms and conditions, the parties hereto agree as follows:

1. The BMPs shall be constructed by the Landowner in accordance with the plans and specifications identified in the Plan.

2. The Landowner shall operate and maintain the BMP(s) as shown on the Plan in good working order acceptable to the Municipality and in accordance with the specific maintenance requirements noted on the Plan.

3. The Landowner hereby grants permission to the Municipality, its authorized agents and employees, to enter upon the property, at reasonable times and upon presentation of proper identification, to inspect the BMP(s) whenever it deems necessary. Whenever possible, the Municipality shall notify the Landowner prior to entering the property.

4. In the event the Landowner fails to operate and maintain the BMP(s) as shown on the Plan in good working order acceptable to the Municipality, the Municipality or its representatives may enter upon the Property and take whatever action is deemed necessary to maintain said BMP(s). This provision shall not be construed to allow the Municipality to erect any permanent structure on the land of the Landowner. It is expressly understood and agreed that the Municipality is under no obligation to maintain or repair said facilities, and in no event shall this Agreement be construed to impose any such obligation on the Municipality.

5. In the event the Municipality, pursuant to this Agreement, performs work of any nature, or expends any funds in performance of said work for labor, use of equipment, supplies, materials, and the like, the Landowner shall reimburse the Municipality for all expenses (direct and indirect) incurred within 10 days of receipt of invoice from the Municipality.

6. The intent and purpose of this Agreement is to ensure the proper maintenance of the BMP(s) by the Landowner; provided, however, that this Agreement shall not be deemed to create or effect any additional liability of any party for damage alleged to result from or be caused by stormwater runoff.

7. The Landowner, its executors, administrators, assigns, and other successors in interests, shall release the Municipality’s employees and designated representatives from all damages,
accidents, casualties, occurrences or claims which might arise or be asserted against said employees and representatives from the construction, presence, existence, or maintenance of the BMP(s) by the Landowner or Municipality. In the event that a claim is asserted against the Municipality, its designated representatives or employees, the Municipality shall promptly notify the Landowner and the Landowner shall defend, at his own expense, any suit based on the claim. If any judgment or claims against the Municipality’s employees or designated representatives shall be allowed, the Landowner shall pay all costs and expenses regarding said judgment or claim.

8. The Municipality may, but is not obligated to, inspect the BMP(s) at a minimum of once every three years to ensure their continued functioning. It shall be the Landowner’s responsibility to ensure that the BMP is functioning in accordance with the approved plan and to notify the Township if any repairs are required to the BMP.

This Agreement shall be recorded at the Office of the Recorder of Deeds of ______________ County, Pennsylvania, and shall constitute a covenant running with the Property and/or equitable servitude, and shall be binding on the Landowner, his administrators, executors, assigns, heirs and any other successors in interests, in perpetuity.

ATTEST:
WITNESS the following signatures and seals:
(SEAL) For the Municipality:

(SEAL) For the Landowner:

ATTEST:
_____________________________ (City, Borough, Township),
County of __________________________, Pennsylvania
I, ________________________________, a Notary Public in and for the County and State aforesaid, whose commission expires on the __________ day of __________, 20__, do hereby certify that _________________________________ whose name(s) is/are signed to the foregoing Agreement bearing date of the __________ day of __________, 20__, has acknowledged the same before me in my said County and State.

GIVEN UNDER MY HAND THIS __________ day of __________, 20__.

NOTARY PUBLIC (SEAL)
APPENDIX B

STORMWATER MANAGEMENT DESIGN CRITERIA

TABLE B-1 DESIGN STORM RAINFALL AMOUNT
Source: NOAA Atlas 14 website, Doylestown Gage (36-2221)

FIGURE B-1 ATLAS 14 TYPE II S-CURVES FOR ALL FREQUENCY STORMS –
DOYLESTOWN GAGE (36-2221)
Source: NOAA Atlas 14 website, Doylestown Gage (36-2221)

TABLE B-2 NATURAL RESOURCE PROTECTION STORMWATER MANAGEMENT
CONTROLS
Source: Article 31 of the Buckingham Township Zoning Ordinance

TABLE B-3 GUIDANCE TO CALCULATE THE 5-YEAR, 24-HOUR VOLUME INCREASE
FROM PRE-DEVELOPMENT TO POST-DEVELOPMENT CONDITIONS
Source: PA BMP Manual Chapter 8

TABLE B-4 RUNOFF CURVE NUMBERS
Source: NRCS (SCS) TR-55

TABLE B-5 VOLUME CONTROL CALCULATION GUIDANCE FOR NONSTRUCTURAL
BMPS
Source: PA BMP Manual Chapter 8, pg 34

TABLE B-6 VOLUME CONTROL CALCULATION GUIDANCE FOR STRUCTURAL BMPS
Source: PA BMP Manual Chapter 8, pg 38

TABLE B-7 RATIONAL RUNOFF COEFFICIENTS

TABLE B-8 MANNING ROUGHNESS COEFFICIENTS
TABLE B-1
DESIGN STORM RAINFALL AMOUNT (INCHES)

The design storm rainfall amount chosen for design should be obtained from the National Oceanic and Atmospheric Administration Atlas 14 interactive website:
http://hdsc.nws.noaa.gov/hdsc/pfds/orb/pa_pfds.html

Source: NOAA Atlas 14 website, Doylestown Gage (36-2221)
http://hdsc.nws.noaa.gov/hdsc/pfds/orb/pa_pfds.html

ARI* (years)	5 min	10 min	15 min	30 min	60 min	120 min	3 hr	6 hr	12 hr	24 hr	48 hr	7 day	10 day	20 day	30 day	45 day	60 day	
1	0.34	0.54	0.68	0.93	1.15	1.38	1.51	1.89	2.30	2.71	3.13	3.48	4.07	4.61	6.23	7.76	9.85	11.81
2	0.40	0.64	0.81	1.12	1.40	1.67	1.83	2.28	2.78	3.26	3.78	4.19	4.87	5.51	7.39	9.14	11.57	13.83
5	0.47	0.76	0.96	1.36	1.75	2.10	2.30	2.86	3.50	4.11	4.76	5.24	6.02	6.71	8.81	10.65	13.30	15.78
10	0.53	0.84	1.06	1.54	2.01	2.42	2.66	3.32	4.11	4.81	5.57	6.09	6.96	7.68	9.93	11.83	14.60	17.23
25	0.59	0.94	1.19	1.76	2.34	2.86	3.15	3.98	4.99	5.83	6.71	7.30	8.30	9.03	11.44	13.36	16.25	19.04
50	0.63	1.00	1.27	1.92	2.60	3.21	3.54	4.52	5.74	6.70	7.66	8.29	9.41	10.11	12.61	14.52	17.46	20.35
100	0.67	1.07	1.35	2.07	2.85	3.56	3.94	5.09	6.55	7.63	8.67	9.33	10.59	11.23	13.79	15.66	18.61	21.57
200	0.71	1.13	1.42	2.21	3.11	3.92	4.35	5.69	7.43	8.64	9.75	10.44	11.83	12.39	14.98	16.79	19.69	22.70
500	0.76	1.20	1.51	2.40	3.44	4.41	4.90	6.54	8.73	10.12	11.30	12.01	13.60	14.00	16.58	18.23	21.02	24.08
1000	0.79	1.24	1.56	2.53	3.69	4.78	5.34	7.23	9.82	11.35	12.57	13.29	15.04	15.28	17.80	19.31	21.96	25.04

* These precipitation frequency estimates are based on a partial duration series. ARI is the Average Recurrence Interval.
FIGURE B-1
Atlas 14 Type II S-Curves for All Frequency Storms – Doylestown Gage (36-2221)

Partial duration based Point Precipitation Frequency Estimates – Version 3
46.3 N 75.1999 W 995 ft
<table>
<thead>
<tr>
<th>Resource Group</th>
<th>Natural Resource</th>
<th>% Resource to be protected</th>
<th>Total Natural Resource Land (acres)</th>
<th>Total Resource Protection Land (II x III)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HYDROLOGIC SURFACE FEATURES</td>
<td>Flood Plain</td>
<td>100%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Floodplain soils</td>
<td>100%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Watercourses or Streams</td>
<td>100%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Waters of Commonwealth</td>
<td>100%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lakes or Ponds</td>
<td>100%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wetlands</td>
<td>100%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lake and Pond Shoreline</td>
<td>100%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SLOPES</td>
<td>Steep Slopes (8 - 15%)</td>
<td>60%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Steep Slopes (15-25%)</td>
<td>70%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Steep Slopes (>25%)</td>
<td>85%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ag SOILS</td>
<td>Agricultural Soils Class I, II, III and IV in the AG-1 and AG-2 Districts</td>
<td>50%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perimeter Vegetation</td>
<td>Vegetation at the Perimeter of a Tract</td>
<td>100%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOREST</td>
<td>Forest*</td>
<td>80%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTALS</td>
<td></td>
<td></td>
<td></td>
<td>acres</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>acres</td>
</tr>
</tbody>
</table>

(*Except where otherwise specified by the Zoning Ordinance Regulations)
TABLE B-3 GUIDANCE TO CALCULATE THE 5-YEAR, 24-HOUR VOLUME INCREASE FROM PRE-DEVELOPMENT TO POST-DEVELOPMENT CONDITIONS

Existing Conditions:

<table>
<thead>
<tr>
<th>Cover Type/Condition</th>
<th>Soil Type</th>
<th>Area (sf)</th>
<th>Area (ac)</th>
<th>CN</th>
<th>S</th>
<th>Ia (0.2s)</th>
<th>Q Runoff (in)</th>
<th>Runoff Volume (ft³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Woodland</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meadow</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impervious</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Developed Conditions:

<table>
<thead>
<tr>
<th>Cover Type/Condition</th>
<th>Soil Type</th>
<th>Area (sf)</th>
<th>Area (ac)</th>
<th>CN</th>
<th>S</th>
<th>Ia (0.2s)</th>
<th>Q Runoff (in)</th>
<th>Runoff Volume (ft³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Woodland</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meadow</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impervious</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5-year Volume Increase

Soil Cover Complex Method:

1. **Step 1:**
 - Runoff (in) = \(Q = \frac{(P - 0.2S)}{(P + 0.8S)} \)
 - \(P = 5\)-year Rainfall (in)
 - \(S = \frac{1000}{CN} - 10 \), the potential maximum retention (including initial abstraction, Ia)

2. **Step 2:**
 - Runoff Volume (Cubic Feet) = \(Q \times \text{Area} \times \frac{1}{12} \)
 - \(Q = \text{Runoff (in)} \)
 - \(\text{Area} = \text{SWM Area (sq ft)} \)
 - \(\text{SWM Area} = \text{Total Site Area} - \text{Protected Area} \)
TABLE B-4. Runoff Curve Numbers (from NRCS (SCS) TR-55)

<table>
<thead>
<tr>
<th>LAND USE DESCRIPTION</th>
<th>Hydrologic Condition</th>
<th>HYDROLOGIC SOIL GROUP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Open Space</td>
<td></td>
<td>68</td>
</tr>
<tr>
<td>Grass cover < 50%</td>
<td>Poor</td>
<td>68</td>
</tr>
<tr>
<td>Grass cover 50% to 75%</td>
<td>Fair</td>
<td>49</td>
</tr>
<tr>
<td>Grass cover > 75%</td>
<td>Good</td>
<td>39</td>
</tr>
<tr>
<td>Meadow</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>Agricultural</td>
<td></td>
<td>68</td>
</tr>
<tr>
<td>Pasture, grassland, or range – Continuous forage for grazing</td>
<td>Poor</td>
<td>68</td>
</tr>
<tr>
<td>Pasture, grassland, or range – Continuous forage for grazing</td>
<td>Fair</td>
<td>49</td>
</tr>
<tr>
<td>Pasture, grassland, or range – Continuous forage for grazing</td>
<td>Good</td>
<td>39</td>
</tr>
<tr>
<td>Brush-weed-grass mixture with brush the major element.</td>
<td>Poor</td>
<td>48</td>
</tr>
<tr>
<td>Brush-weed-grass mixture with brush the major element.</td>
<td>Fair</td>
<td>35</td>
</tr>
<tr>
<td>Brush-weed-grass mixture with brush the major element.</td>
<td>Good</td>
<td>30</td>
</tr>
<tr>
<td>Fallow Bare soil</td>
<td>--------------------</td>
<td>77</td>
</tr>
<tr>
<td>Crop residue cover (CR)</td>
<td>Poor</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>Good</td>
<td>74</td>
</tr>
<tr>
<td>Woods – grass combination (orchard or tree farm)</td>
<td>Poor</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>Fair</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>Good</td>
<td>32</td>
</tr>
<tr>
<td>Woods</td>
<td>Poor</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>Fair</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>Good</td>
<td>30</td>
</tr>
<tr>
<td>Commercial (85% Impervious)</td>
<td>89</td>
<td>92</td>
</tr>
<tr>
<td>Industrial (72% Impervious)</td>
<td>81</td>
<td>88</td>
</tr>
<tr>
<td>Institutional (50% Impervious)</td>
<td>71</td>
<td>82</td>
</tr>
<tr>
<td>Residential districts by average lot size:</td>
<td>% Impervious</td>
<td>65</td>
</tr>
<tr>
<td>1/8 acre or less * (town houses)</td>
<td>77</td>
<td>85</td>
</tr>
<tr>
<td>1/4 acre</td>
<td>38</td>
<td>61</td>
</tr>
<tr>
<td>1/3 acre</td>
<td>30</td>
<td>57</td>
</tr>
<tr>
<td>1/2 acre</td>
<td>25</td>
<td>54</td>
</tr>
<tr>
<td>1 acre</td>
<td>20</td>
<td>51</td>
</tr>
<tr>
<td>2 acres</td>
<td>12</td>
<td>46</td>
</tr>
<tr>
<td>Farmstead</td>
<td>59</td>
<td>74</td>
</tr>
<tr>
<td>Smooth Surfaces (Concrete, Asphalt, Gravel or Bare Compacted Soil)</td>
<td>98</td>
<td>98</td>
</tr>
<tr>
<td>Water</td>
<td>98</td>
<td>98</td>
</tr>
<tr>
<td>Mining/Newly Graded Areas (Pervious Areas Only)</td>
<td>77</td>
<td>86</td>
</tr>
</tbody>
</table>

* Includes Multi-Family Housing unless justified lower density can be provided.

Note: Existing site conditions of bare earth or fallow ground shall be considered as meadow when choosing a CN value.
TABLE B-5: VOLUME CONTROL CALCULATION GUIDANCE FOR NONSTRUCTURAL BMPS

<table>
<thead>
<tr>
<th>Type of Nonstructural BMP</th>
<th>AREA (sq ft) * Runoff * 1/12 = Volume (in)</th>
<th>Volume Reduction (ft³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use of Natural Drainage Feature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Utilize natural flow pathways</td>
<td>_____sq ft * 1/4" * 1/12 =</td>
<td>_____cu ft</td>
</tr>
<tr>
<td>Minimum Soil Compaction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lawn</td>
<td>_____sq ft * 1/3" * 1/12 =</td>
<td>_____cu ft</td>
</tr>
<tr>
<td>Meadow</td>
<td>_____sq ft * 1/3" * 1/12 =</td>
<td>_____cu ft</td>
</tr>
<tr>
<td>Protecting existing trees (not located in protected area)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For trees within 20 feet of impervious cover:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tree Canopy</td>
<td>_____sq ft * 1" * 1/12 =</td>
<td>_____cu ft</td>
</tr>
<tr>
<td>For trees within 20-100 feet of impervious cover:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tree Canopy</td>
<td>_____sq ft * 1/2" * 1/12 =</td>
<td>_____cu ft</td>
</tr>
<tr>
<td>Rooftop Disconnection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For runoff directed to pervious and/or vegetative areas where infiltration occurs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roof Area</td>
<td>_____sq ft * 1/4" * 1/12 =</td>
<td>_____cu ft</td>
</tr>
<tr>
<td>Impervious Disconnection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For runoff from impervious surfaces such as streets and concrete directed to pervious and/or vegetative areas where infiltration occurs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impervious Area</td>
<td>_____sq ft * 1/4" * 1/12 =</td>
<td>_____cu ft</td>
</tr>
</tbody>
</table>

Total Volume Reduction | _____cu ft |

* represents multiply
TABLE B-6: VOLUME CONTROL CALCULATION GUIDANCE FOR STRUCTURAL BMPS

<table>
<thead>
<tr>
<th>Type</th>
<th>Proposed Structural BMP</th>
<th>Section in BMP Manual</th>
<th>Area (sq ft)</th>
<th>Storage Volume (cu ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infiltration and / or Evapotranspiration</td>
<td>Porous Pavement</td>
<td>6.4.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Infiltration Basin</td>
<td>6.4.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Infiltration Bed</td>
<td>6.4.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Infiltration Trench</td>
<td>6.4.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rain Garden/Bioretention</td>
<td>6.4.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dry Well/Seepage Pit</td>
<td>6.4.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Constructed Filter</td>
<td>6.4.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vegetative Swale</td>
<td>6.4.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vegetative Filter Strip</td>
<td>6.4.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Infiltration Berm</td>
<td>6.4.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evaporation and / or Reuse</td>
<td>Vegetative Roof</td>
<td>6.5.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Capture and Re-use</td>
<td>6.5.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Runoff Quality</td>
<td>Constructed Wetlands</td>
<td>6.6.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wet Pond / Retention Basin</td>
<td>6.6.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dry Extended Detention Basin</td>
<td>6.6.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water Quality Filters</td>
<td>6.6.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Restoration</td>
<td>Riparian Buffer Restoration</td>
<td>6.7.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Landscape Restoration / Reforestation</td>
<td>6.7.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Soil Amendment</td>
<td>6.7.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>Level Spreader</td>
<td>6.8.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Special Storage Areas</td>
<td>6.8.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Volume Control from Structural BMPS: ________________
Table B-7, Rational Runoff Coefficients

By Hydrologic Soils Group and Overland Slope (%)

<table>
<thead>
<tr>
<th>Land Use</th>
<th>A</th>
<th>2-6%</th>
<th>6%+</th>
<th>A</th>
<th>2-6%</th>
<th>6%+</th>
<th>A</th>
<th>2-6%</th>
<th>6%+</th>
<th>A</th>
<th>2-6%</th>
<th>6%+</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.06</td>
<td>0.13</td>
<td>0.15</td>
<td>0.14</td>
<td>0.23</td>
<td>0.21</td>
<td>0.14</td>
<td>0.23</td>
<td>0.21</td>
<td>0.14</td>
<td>0.23</td>
<td>0.21</td>
</tr>
<tr>
<td></td>
<td>0.13</td>
<td>0.19</td>
<td>0.16</td>
<td>0.14</td>
<td>0.21</td>
<td>0.18</td>
<td>0.14</td>
<td>0.21</td>
<td>0.18</td>
<td>0.14</td>
<td>0.21</td>
<td>0.18</td>
</tr>
<tr>
<td>Cultivated Land</td>
<td>0.12</td>
<td>0.20</td>
<td>0.18</td>
<td>0.13</td>
<td>0.22</td>
<td>0.23</td>
<td>0.12</td>
<td>0.21</td>
<td>0.23</td>
<td>0.12</td>
<td>0.21</td>
<td>0.23</td>
</tr>
<tr>
<td></td>
<td>0.11</td>
<td>0.16</td>
<td>0.21</td>
<td>0.14</td>
<td>0.22</td>
<td>0.23</td>
<td>0.13</td>
<td>0.21</td>
<td>0.23</td>
<td>0.13</td>
<td>0.21</td>
<td>0.23</td>
</tr>
<tr>
<td>Pasture</td>
<td>0.10</td>
<td>0.18</td>
<td>0.21</td>
<td>0.13</td>
<td>0.20</td>
<td>0.23</td>
<td>0.12</td>
<td>0.21</td>
<td>0.23</td>
<td>0.12</td>
<td>0.21</td>
<td>0.23</td>
</tr>
<tr>
<td></td>
<td>0.09</td>
<td>0.16</td>
<td>0.20</td>
<td>0.11</td>
<td>0.18</td>
<td>0.21</td>
<td>0.10</td>
<td>0.17</td>
<td>0.20</td>
<td>0.10</td>
<td>0.17</td>
<td>0.20</td>
</tr>
<tr>
<td>Meadow</td>
<td>0.08</td>
<td>0.11</td>
<td>0.14</td>
<td>0.07</td>
<td>0.11</td>
<td>0.14</td>
<td>0.06</td>
<td>0.11</td>
<td>0.14</td>
<td>0.05</td>
<td>0.11</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>0.07</td>
<td>0.10</td>
<td>0.13</td>
<td>0.06</td>
<td>0.10</td>
<td>0.13</td>
<td>0.05</td>
<td>0.10</td>
<td>0.13</td>
<td>0.05</td>
<td>0.10</td>
<td>0.13</td>
</tr>
<tr>
<td>Forest</td>
<td>0.05</td>
<td>0.10</td>
<td>0.14</td>
<td>0.04</td>
<td>0.11</td>
<td>0.14</td>
<td>0.04</td>
<td>0.11</td>
<td>0.14</td>
<td>0.03</td>
<td>0.11</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>0.04</td>
<td>0.09</td>
<td>0.12</td>
<td>0.03</td>
<td>0.11</td>
<td>0.12</td>
<td>0.03</td>
<td>0.11</td>
<td>0.12</td>
<td>0.03</td>
<td>0.11</td>
<td>0.12</td>
</tr>
<tr>
<td>Residential</td>
<td>0.25</td>
<td>0.27</td>
<td>0.30</td>
<td>0.26</td>
<td>0.29</td>
<td>0.30</td>
<td>0.27</td>
<td>0.30</td>
<td>0.30</td>
<td>0.27</td>
<td>0.30</td>
<td>0.30</td>
</tr>
<tr>
<td>Lot Size 1/8 Acre</td>
<td>0.23</td>
<td>0.25</td>
<td>0.27</td>
<td>0.24</td>
<td>0.26</td>
<td>0.27</td>
<td>0.25</td>
<td>0.26</td>
<td>0.25</td>
<td>0.24</td>
<td>0.26</td>
<td>0.25</td>
</tr>
<tr>
<td>Lot Size 1/4 Acre</td>
<td>0.30</td>
<td>0.32</td>
<td>0.33</td>
<td>0.28</td>
<td>0.29</td>
<td>0.32</td>
<td>0.28</td>
<td>0.29</td>
<td>0.32</td>
<td>0.28</td>
<td>0.29</td>
<td>0.32</td>
</tr>
<tr>
<td>Lot Size 1/3 Acre</td>
<td>0.30</td>
<td>0.32</td>
<td>0.33</td>
<td>0.29</td>
<td>0.31</td>
<td>0.33</td>
<td>0.29</td>
<td>0.31</td>
<td>0.33</td>
<td>0.29</td>
<td>0.31</td>
<td>0.33</td>
</tr>
<tr>
<td>Lot Size 1/2 Acre</td>
<td>0.30</td>
<td>0.32</td>
<td>0.33</td>
<td>0.29</td>
<td>0.31</td>
<td>0.33</td>
<td>0.29</td>
<td>0.31</td>
<td>0.33</td>
<td>0.29</td>
<td>0.31</td>
<td>0.33</td>
</tr>
<tr>
<td>Lot Size 1 Acre</td>
<td>0.30</td>
<td>0.32</td>
<td>0.33</td>
<td>0.29</td>
<td>0.31</td>
<td>0.33</td>
<td>0.29</td>
<td>0.31</td>
<td>0.33</td>
<td>0.29</td>
<td>0.31</td>
<td>0.33</td>
</tr>
<tr>
<td>Industrial</td>
<td>0.65</td>
<td>0.67</td>
<td>0.69</td>
<td>0.65</td>
<td>0.67</td>
<td>0.69</td>
<td>0.65</td>
<td>0.67</td>
<td>0.69</td>
<td>0.65</td>
<td>0.67</td>
<td>0.69</td>
</tr>
<tr>
<td>Commercial</td>
<td>0.86</td>
<td>0.88</td>
<td>0.89</td>
<td>0.86</td>
<td>0.88</td>
<td>0.89</td>
<td>0.86</td>
<td>0.88</td>
<td>0.89</td>
<td>0.86</td>
<td>0.88</td>
<td>0.89</td>
</tr>
<tr>
<td>Streets</td>
<td>0.77</td>
<td>0.80</td>
<td>0.82</td>
<td>0.78</td>
<td>0.81</td>
<td>0.83</td>
<td>0.78</td>
<td>0.81</td>
<td>0.83</td>
<td>0.78</td>
<td>0.81</td>
<td>0.83</td>
</tr>
<tr>
<td>Open Space</td>
<td>0.25</td>
<td>0.27</td>
<td>0.29</td>
<td>0.25</td>
<td>0.27</td>
<td>0.29</td>
<td>0.25</td>
<td>0.27</td>
<td>0.29</td>
<td>0.25</td>
<td>0.27</td>
<td>0.29</td>
</tr>
<tr>
<td>Parking</td>
<td>0.95</td>
<td>0.96</td>
<td>0.97</td>
<td>0.95</td>
<td>0.96</td>
<td>0.97</td>
<td>0.95</td>
<td>0.96</td>
<td>0.97</td>
<td>0.95</td>
<td>0.96</td>
<td>0.97</td>
</tr>
</tbody>
</table>

* Runoff coefficients for storm recurrence intervals less than 25 years.
* Runoff coefficients for storm recurrence intervals of 25 years or more.

TABLE B-8. MANNING’S ROUGHNESS COEFFICIENTS

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>Manning’s n-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smooth-wall Plastic Pipe</td>
<td>0.011</td>
</tr>
<tr>
<td>Concrete Pipe</td>
<td>0.012</td>
</tr>
<tr>
<td>Smooth-lined Corrugated Metal Pipe</td>
<td>0.012</td>
</tr>
<tr>
<td>Corrugated Plastic Pipe</td>
<td>0.024</td>
</tr>
<tr>
<td>Annular Corrugated Steel And Aluminum Alloy Pipe (Plain or polymer coated)</td>
<td></td>
</tr>
<tr>
<td>68 mm × 13 mm (2 2/3 in × 1/2 in) Corrugations</td>
<td>0.024</td>
</tr>
<tr>
<td>75 mm × 25 mm (3 in × 1 in) Corrugations</td>
<td>0.027</td>
</tr>
<tr>
<td>125 mm × 25 mm (5 in × 1 in) Corrugations</td>
<td>0.025</td>
</tr>
<tr>
<td>150 mm × 50 mm (6 in × 2 in) Corrugations</td>
<td>0.033</td>
</tr>
<tr>
<td>Helically Corrugated Steel And Aluminum Alloy Pipe (Plain or polymer coated)</td>
<td></td>
</tr>
<tr>
<td>75 mm × 25 mm (3 in × 1 in), 125 mm × 25 mm (5 in × 1 in), or</td>
<td>0.024</td>
</tr>
<tr>
<td>150 mm × 50 mm (6 in × 2 in) Corrugations</td>
<td></td>
</tr>
<tr>
<td>Helically Corrugated Steel And Aluminum Alloy Pipe (Plain or polymer coated)</td>
<td></td>
</tr>
<tr>
<td>68 mm × 13 mm (2 2/3 in × 1/2 in) Corrugations</td>
<td></td>
</tr>
<tr>
<td>a. Lower Coefficients*</td>
<td></td>
</tr>
<tr>
<td>450 mm (18 in) Diameter</td>
<td>0.014</td>
</tr>
<tr>
<td>600 mm (24 in) Diameter</td>
<td>0.016</td>
</tr>
<tr>
<td>900 mm (36 in) Diameter</td>
<td>0.019</td>
</tr>
<tr>
<td>1200 mm (48 in) Diameter</td>
<td>0.020</td>
</tr>
<tr>
<td>1500 mm (60 in) Diameter</td>
<td>0.021</td>
</tr>
<tr>
<td>b. Higher Coefficients**</td>
<td>0.024</td>
</tr>
<tr>
<td>Annular or Helically Corrugated Steel or Aluminum Alloy Pipe Arches or Other Non-Circular Metal Conduit (Plain or Polymer coated)</td>
<td>0.024</td>
</tr>
<tr>
<td>Vitrified Clay Pipe</td>
<td>0.012</td>
</tr>
<tr>
<td>Ductile Iron Pipe</td>
<td>0.013</td>
</tr>
<tr>
<td>Asphalt Pavement</td>
<td>0.015</td>
</tr>
<tr>
<td>Concrete Pavement</td>
<td>0.014</td>
</tr>
<tr>
<td>Grass Medians</td>
<td>0.050</td>
</tr>
<tr>
<td>Grass – Residential</td>
<td>0.30</td>
</tr>
<tr>
<td>Earth</td>
<td>0.020</td>
</tr>
<tr>
<td>Gravel</td>
<td>0.030</td>
</tr>
<tr>
<td>Rock</td>
<td>0.035</td>
</tr>
<tr>
<td>Cultivated Areas</td>
<td>0.030 - 0.050</td>
</tr>
<tr>
<td>Dense Brush</td>
<td>0.070 - 0.140</td>
</tr>
<tr>
<td>Heavy Timber (Little undergrowth)</td>
<td>0.100 - 0.150</td>
</tr>
<tr>
<td>Heavy Timber (w/underbrush)</td>
<td>0.40</td>
</tr>
<tr>
<td>Streams:</td>
<td></td>
</tr>
<tr>
<td>a. Some Grass And Weeds (Little or no brush)</td>
<td>0.030 - 0.035</td>
</tr>
<tr>
<td>b. Dense Growth of Weeds</td>
<td>0.035 - 0.050</td>
</tr>
<tr>
<td>c. Some Weeds (Heavy brush on banks)</td>
<td>0.050 - 0.070</td>
</tr>
</tbody>
</table>

Notes:

* Use the lower coefficient if any one of the following conditions apply:
 a. A storm pipe longer than 20 diameters, which directly or indirectly connects to an inlet or manhole, located in swales adjacent to shoulders in cut areas or depressed medians.
 b. A storm pipe which is specially designed to perform under pressure.

**Use the higher coefficient if any one of the following conditions apply:
 a. A storm pipe which directly or indirectly connects to an inlet or manhole located in highway pavement sections or adjacent to curb or concrete median barrier.
 b. A storm pipe which is shorter than 20 diameters long.
 c. A storm pipe which is partly lined helically corrugated metal pipe.
Buckingham Township

Stormwater Management (SWM) Permit Application

Part 1: Owner of Record and Property Information (Completed by Applicant)

<table>
<thead>
<tr>
<th>Last Name</th>
<th>First</th>
<th>M.I.</th>
<th>Date</th>
<th>Street Address</th>
<th>City</th>
<th>State</th>
<th>ZIP</th>
<th>Apartment/Unit #</th>
<th>Phone</th>
<th>E-mail Address</th>
</tr>
</thead>
</table>

Are you the owner of the property? **YES □ NO □** If no, please also complete the Applicant Information in Part 6 on Page 3.

Tax Parcel Number (If known) **06-** Lot Area **□** Square Feet

Part 2: Proposed Regulated Activity or Improvement (Completed by Applicant)

1. Describe the proposed regulated activity:

2. How much impervious surface area will be created by the proposed regulated activity? **Square Feet**

3. Is the Proposed Impervious Surface Ratio greater than permitted by the Zoning Ordinance? **YES □ NO □** If yes, please stop and see the Township Zoning Officer. Select NO if you are unsure.

4. Is the proposed regulated activity limited to residential deck construction? (Covered decks answer no) **YES □ NO □** If yes, select “Deck Permit Exception” and sign below. No further information should be necessary.

5. Does the proposed regulated activity require a building permit? **YES □ NO □** If yes, skip to Question No. 7.

6. Does the proposed regulated activity create less than 501 Square Feet of impervious surface area? **YES □ NO □** If yes, select “Non-Building Permit Exception” and sign below. No further information should be necessary.

7. Does the proposed regulated activity create less than 1,001 Square Feet of impervious surface area? **YES □ NO □** If yes, select “SWM Permit w/o SWM Plan”, sign below, and continue to Part 5A (Page 2).

8. Does the proposed regulated activity create less than 5,001 Square Feet of impervious surface area? **YES □ NO □** If yes, the Property Owner may select “SWM Permit w/ Small Project SWM Plan”, sign below and continue to Part 5B (Page 2). Otherwise, select “SWM Permit with SWM Plan”, sign below and continue to Part 5C (Page 3).

9. Does the proposed regulated activity create more than 5,000 Square Feet of impervious surface area? **YES □ NO □** If yes, select “SWM Permit with SWM Plan”, sign below and continue to Part 5C (Page 3).

10. Does the proposed regulated activity qualify for any other Exemptions listed in the Stormwater Ordinance? **YES □ NO □** If yes, select “Other Permit Exception”, sign below and provide the Township with supporting documentation.

Part 3: Select Permit Type and Disclaimer (Completed by Applicant)

- Residential Deck Permit Exception
- Non-Building Permit Exception
- Other Permit Exception
- SWM Permit with SWM Plan
- SWM Permit w/o SWM Plan
- SWM Permit w/ Small Project SWM Plan

I hereby certify that to best of my knowledge, all of the statements on this application and all information submitted to the Township in support of this application are true, correct and complete. I hereby authorize members of the Township, Township Staff, and its consultants to enter the lands proposed for improvement for purposes of site inspections and enforcement of the provisions of the Ordinances of the Township, if necessary. Further, I and my successor(s) in this application agree to reimburse the Township of Buckingham for such fees and expenses as said Township may incur for engineering, legal services and administrative fees in reviewing this application. Further, I agree to provide all filing fees and escrow deposits as established by Resolution of the Board of Supervisors.

Owner of Record Signature **Date**

Part 4: Township Processing and Fees (Completed by Township)

<table>
<thead>
<tr>
<th>Date Received</th>
<th>Received by (initials)</th>
<th>Twp Identification No.</th>
<th>Submission Fee</th>
<th>Escrow</th>
<th>Reviewed by:</th>
</tr>
</thead>
</table>

1. As defined by the Buckingham Township Zoning Ordinance.
PART 5A: ADDITIONAL INFORMATION – SWM PERMIT WITHOUT SWM SITE PLAN

Based on the information presented in Part 2 of this application, a SWM Permit is required for the proposed regulated activity. Due to limited amount of additional proposed impervious surface area (under 1000 SF) a SWM Plan is not required. However, as part of the permit approval, the applicant is required to meet the “Volume Control” requirements of the Stormwater Management Ordinance and shall supply the Township with supporting documentation to verify compliance with the requirements of the Stormwater Ordinance. Although the information does not need to be prepared by a Qualified Design Professional (Engineer, Surveyor, etc.), it is recommended that all applicants who are required to obtain a Stormwater Management Permit seek the assistance of a Qualified Design Professional to assist in the design of the SWM facilities.

1. Required Runoff Control Volume, as required by Section 303 of the Ordinance (Provide copies of Table B-3 from Appendix B or other supporting calculations to document required capture volume): Cubic Feet
2. Total Proposed Volume Control (Provide copies Tables B-5 and B-6 from Appendix B): Cubic Feet
3. Total area of earth disturbance: Square Feet
4. Estimated cost to complete the installation of the SWM Facilities (Based on Contractor’s Bid): Dollars

<table>
<thead>
<tr>
<th>Question</th>
<th>Yes</th>
<th>No</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Are any other Permits required (PaDEP, BCCD, PennDOT, etc.)?</td>
<td></td>
<td></td>
<td>If Yes, provide two (2) copies of all permit approvals.</td>
</tr>
<tr>
<td>6. Is the site located within 200 feet of the Buckingham Carbonate (Limestone Valley? (See Ordinance 94-06)</td>
<td></td>
<td></td>
<td>If Yes, provide two (2) copies of the Limestone Study.</td>
</tr>
<tr>
<td>7. Has the Applicant read and understood the Stormwater Ordinance requirements, including the sections regarding Inspections, Fees and Expenses, and Maintenance Responsibilities?</td>
<td></td>
<td></td>
<td>If Yes, sign the application and submit two (2) copies of all supporting documentation.</td>
</tr>
</tbody>
</table>

PART 5B: ADDITIONAL INFORMATION – SWM PERMIT WITH SMALL PROJECT SWM SITE PLAN

Based on the information presented in Part 2 of this application, a SWM Permit with a SWM Site Plan is required for the proposed regulated activity. However, based on the proposed amount of additional proposed impervious surface area (Between 1001 and 5000 SF), property owners may elect to submit a Small Project SWM Plan based on the guidelines listed in Appendix I. Although the information does not need to be prepared by a Qualified Design Professional (Engineer, Surveyor, etc.), it is recommended that all property owners who are required to obtain a SWM Permit seek the assistance of a Qualified Design Professional to assist in the design of the SWM facilities. The property owner shall complete the following and supply the Township with all necessary supporting documentation to verify that the Ordinance requirements have been met.

1. Required Runoff Control Volume, as required by Section 303 of the Ordinance (Provide copies of Table B-3 from Appendix B or other supporting calculations to document required capture volume): Cubic Feet
2. Total Proposed Volume Control (Provide copies Tables B-5 and B-6 from Appendix B): Cubic Feet
3. Total area of earth disturbance: Square Feet
4. Estimated cost to complete the installation of the SWM Facilities (Based on Contractor’s Bid): Dollars

<table>
<thead>
<tr>
<th>Question</th>
<th>Yes</th>
<th>No</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Are any other Permits required (PaDEP, BCCD, PennDOT, etc.)?</td>
<td></td>
<td></td>
<td>If Yes, provide three (3) copies of all permit approvals.</td>
</tr>
<tr>
<td>6. Is the site located within 200 feet of the Buckingham Carbonate (Limestone Valley? (See Ordinance 94-06)</td>
<td></td>
<td></td>
<td>If Yes, provide three (3) copies of the Limestone Study.</td>
</tr>
<tr>
<td>7. Have adequate facilities been provided to ensure that During Construction Release Rates are less than Pre-Development Rates?</td>
<td></td>
<td></td>
<td>If Yes, provide three (3) copies of a narrative describing all proposed SWM facilities.</td>
</tr>
<tr>
<td>8. Have SWM facilities been selected to meet the Runoff Pollution Control Standards?</td>
<td></td>
<td></td>
<td>If Yes, provide three (3) copies of Water Quality Worksheets from BMP Manual.</td>
</tr>
<tr>
<td>9. Have SWM facilities been selected to meet the Thermal Control Standards?</td>
<td></td>
<td></td>
<td>If Yes, provide three (3) copies describing the methods used to reduce Thermal Impacts.</td>
</tr>
<tr>
<td>10. Has a SWM Operation and Maintenance Manual been prepared to address long term ownership and maintenance responsibilities?</td>
<td></td>
<td></td>
<td>If Yes, provide three (3) copies of the O & M Manual to the Township.</td>
</tr>
<tr>
<td>11. Has a draft copy of the Operation and Maintenance Agreement (with legal description) been included with the SWM Plan?</td>
<td></td>
<td></td>
<td>If Yes, provide three (3) copies of the Draft O & M Agreement to the Township.</td>
</tr>
<tr>
<td>12. Has the Applicant read and understood the Stormwater Ordinance requirements, including the sections regarding Inspections, Fees and Expenses, and Maintenance Responsibilities?</td>
<td></td>
<td></td>
<td>If Yes, sign the application and submit three (3) copies of all supporting documentation.</td>
</tr>
</tbody>
</table>
PART 5C: ADDITIONAL INFORMATION – SWM PERMIT WITH SWM SITE PLAN

Based on the information presented in Part 2 of this application, a SWM Permit with a SWM Site Plan is required for the proposed regulated activity. All information provided to the Township shall be prepared by a Qualified Design Professional (Engineer, Surveyor, etc.) and shall meet all of the requirements of the Stormwater Management Ordinance. The Applicant shall complete the following and shall supply the Township with all necessary supporting documentation to verify that the Ordinance requirements have been met. In addition to the paper copies noted below, two copies of all documentation, in PDF format on CD/DVD shall be provided to the Township with this application.

1. Required Runoff Control Volume, as required by Section 303 of the Ordinance (Provide copies of Table B-3 from Appendix B or other supporting calculations to document required capture volume):
 Cubic Feet

2. Total Proposed Volume Control (Provide copies Tables B-3 and B-6 from Appendix B):
 Cubic Feet

3. Total area of earth disturbance:
 Square Feet

4. Estimated cost to complete the installation of the SWM Facilities (Based on an engineer’s estimate):
 Dollars

5. Are any other Permits required (PaDEP, BCCD, PennDOT, etc.)?
 YES ☐ NO ☐
 If Yes, provide three (3) copies of all permit approvals.

6. Has a Post Construction Stormwater Management Narrative and Supporting Calculations Report been prepared for this project?
 YES ☐ NO ☐
 If Yes, provide three (3) copies of the report to the Township.

7. Has a Stormwater Management Site Plan, including an ERSAM, been prepared for this project?
 YES ☐ NO ☐
 If Yes, provide three (3) copies of the plans to the Township.

8. Is the site located within 200 feet of the Buckingham Carbonate (Limestone) Valley? (See Ordinance 94-06)
 YES ☐ NO ☐
 If Yes, provide three (3) copies of the Limestone Study.

9. Has a Soils Report been prepared to support the design of all proposed SWM facilities?
 YES ☐ NO ☐
 If Yes, provide three (3) copies of the report to the Township.

10. Has a SWM Operation and Maintenance Manual been prepared to address long term ownership and maintenance responsibilities.
 YES ☐ NO ☐
 If Yes, provide three (3) copies of the O & M Manual to the Township.

11. Has a draft copy of the Operation and Maintenance Agreement (with legal description) been included with the SWM Plan?
 YES ☐ NO ☐
 If Yes, provide three (3) copies of the Draft O & M Agreement to the Township.

12. Has the Applicant read and understood the Stormwater Ordinance requirements, including the sections regarding Inspections, Fees and Expenses, and Maintenance Responsibilities?
 YES ☐ NO ☐
 If Yes, sign the application and submit three (3) copies of all supporting documentation.

PART 6: APPLICANT/CONTRACTOR/ATTORNEY/CONSULTANT INFORMATION

As noted above, although a Qualified Design Consultant is not required to complete all SWM permit applications, it is recommended that any Applicant submitting a SWM Permit Application seek assistance from a Qualified Design Consultant or a contractor with experience in constructing Stormwater Management Facilities. If a Contractor, Attorney, Engineer or any other consultant is responsible for any information submitted to the Township in support of this application, the applicant shall include all relevant contact information below.

Name of Applicant Contractor: _________________________________ Telephone No. ________________________________
Address: __ Email Address: ________________________________

Name of Attorney: _________________________________ Telephone No. ________________________________
Address: __ Email Address: ________________________________

Name of Engineer/Surveyor: _________________________________ Telephone No. ________________________________
Address: __ Email Address: ________________________________

I hereby certify that to the best of my knowledge, all of the statements on this application and all information submitted to the Township in support of this application are true, correct and complete. I hereby authorize members of the Township, Township Staff, and its consultants to enter the lands proposed for improvement for purposes of site inspections and enforcement of the provisions of the Ordinances of the Township, if necessary.

Further, I and my successors(s) in this application agree to reimburse the Township of Buckingham for such fees and expenses as said Township may incur for engineering, legal services and administrative fees in reviewing this application. Further, I agree to provide all filing fees and escrow deposits as established by Resolution of the Board of Supervisors.

Owner of Record Signature _________________________________ Date ________________________________

Page 3
APPENDIX D: Buckingham Township Stormwater Management District Plan
APPENDIX E: LOW IMPACT DEVELOPMENT (LID) PRACTICES

ALTERNATIVE APPROACH FOR MANAGING STORMWATER RUNOFF
Natural hydrologic conditions can be altered radically by poorly planned development practices, such as introducing unnecessary impervious surfaces, destroying existing drainage swales, constructing unnecessary storm sewers, and changing local topography. A traditional drainage approach of development has been to remove runoff from a site as quickly as possible and capture it in a detention basin. This approach leads ultimately to the degradation of water quality as well as expenditure of additional resources for detaining and managing concentrated runoff at some downstream location.

The recommended alternative approach is to promote practices that will minimize post-development runoff rates and volumes and will minimize needs for artificial conveyance and storage facilities. To simulate predevelopment hydrologic conditions, infiltration is often necessary to offset the loss of infiltration by the creation of impervious surfaces. Preserving natural hydrologic conditions requires careful alternative site design considerations. Site design practices include preserving natural drainage features, minimizing impervious surface area, reducing the hydraulic connectivity of impervious surfaces, and protecting natural depression storage. A well-designed site will contain a mix of all those features.

Sometimes regulations create obstacles for an applicant interested in implementing low impact development techniques on their site. A municipality should consider examining their ordinances and amending the sections which limit LID techniques. For example, a municipality could remove parking space minimums and establish parking space maximums to reduce the area of impervious surface required. Other allowable regulations to promote LID includes permitting curb cuts or wheel stops instead of requiring curbs and allowing sumped landscaping where the runoff can drain instead of requiring raised beds. These small changes to ordinances can remove the barriers which prevent applicants from pursuing LID practices.

The following describes various LID techniques:

 a. **Preserving Natural Drainage Features**. Protecting natural drainage features, particularly vegetated drainage swales and channels, is desirable because of their ability to infiltrate and attenuate flows and to filter pollutants. However, this objective is often not accomplished in land development. In fact, commonly held drainage philosophy encourages just the opposite pattern—streets and adjacent storm sewers are typically located in the natural headwater valleys and swales, thereby replacing natural drainage functions with a completely impervious system. As a result, runoff and pollutants generated from impervious surfaces flow directly into storm sewers with no opportunity for attenuation, infiltration, or
filtration. Developments designed to fit site topography also minimizes the amount of grading on site.

b. **Protecting Natural Depression Storage Areas.** Depressional storage areas either have no surface outlet or drain very slowly following a storm event. They can be commonly seen as ponded areas in farm fields during the wet season or after large runoff events. Traditional development practices eliminate these depressions by filling or draining, thereby obliterating their ability to reduce surface runoff volumes and trap pollutants. The volume and release rate characteristics of depressions should be protected in the design of the development site. The depressions can be protected by simply avoiding the depression or by incorporating its storage as additional capacity in required detention facilities.

 a. **Avoiding Introduction of Impervious Areas.** Careful site planning should consider reducing impervious coverage to the maximum extent possible. Building footprints, sidewalks, driveways, and other features producing impervious surfaces should be evaluated to minimize impacts of runoff.

 b. **Disconnecting Impervious Surfaces (DIA’s):** Impervious surfaces are significantly less of a problem if they are not directly connected to an impervious conveyance system (such as storm sewer). Two basic ways to reduce hydraulic connectivity are routing of roof runoff over lawns and reducing the use of storm sewers. Site grading should promote increasing travel time of stormwater runoff, and should help reduce concentration of runoff to a single point in the development. (See Ordinance Appendix F for additional description)

 c. **Reducing Street Widths.** Street widths can be reduced by either eliminating on-street parking or by reducing roadway widths. Municipal planners and traffic designers should encourage narrower neighborhood streets which ultimately could lower maintenance.

 d. **Limiting Sidewalks to One Side of the Street.** A sidewalk on one side of the street may suffice in low-traffic neighborhoods. The lost sidewalk could be replaced with bicycle/recreational trails that follow back-of-lot lines. Where appropriate, backyard trails should be constructed using pervious materials.

 e. **Reducing Building Setbacks.** Reducing building setbacks reduces impervious cover associated with driveway and entry walks and is most readily accomplished along low-traffic streets where traffic noise is not a problem.

 a. **Routing Roof Runoff Over Lawns.** Roof runoff can be easily routed over lawns in most site designs. The practice discourages direct connections of downspouts to storm sewers or parking lots. The practice also discourages sloping driveways and parking lots to the street. By routing roof drains and crowning the driveway to run off to the lawn, the lawn is essentially used as a filter strip.

 b. **Reducing the Use of Storm Sewers.** By reducing use of storm sewers for draining streets, parking lots, and back yards, the potential for accelerating runoff from the development can be greatly reduced. The practice requires greater use of swales and may not be practical for some development sites, especially if there are concerns for areas that do not drain in a “reasonable” time. The practice requires educating local citizens and public works officials, who expect runoff to disappear shortly after a rainfall event.

4. **Cluster and Concentrate:** See Section 5.5 of the *Pennsylvania Stormwater Best Management Practices Manual, Pennsylvania Department of Environmental Protection (PADEP)* no. 363-0300-002 (2006). Cluster developments can also reduce the amount of impervious area for a given number of lots. The biggest savings occurs with street length, which also will reduce costs of the development. Cluster development “clusters” the construction activity onto less sensitive areas without substantially affecting the gross density of development.

In summary, a careful consideration of the existing topography and implementation of a combination of the above mentioned techniques may avoid construction of costly stormwater control measures. Benefits include reduced potential of downstream flooding, water quality improvement of receiving streams/water bodies and enhancement of aesthetics and reduction of development costs. Other benefits include more stable baseflows in receiving streams, improved groundwater recharge, reduced flood flows, reduced pollutant loads, and reduced costs for conveyance and storage.
APPENDIX F: DISCONNECTED IMPERVIOUS AREA (DIA)

ROOFTOP DISCONNECTION
When rooftop downspouts are directed to a pervious area that allows for infiltration, filtration, and increased time of concentration, the rooftop may qualify as completely or partially DIA and a portion of the impervious rooftop area may be excluded from the calculation of total impervious area.

A rooftop is considered to be completely or partially disconnected if it meets the requirements listed below:

- The contributing area of a rooftop to each disconnected discharge is 500 square feet or less, and
- The soil, in proximity of the roof water discharge area, is not designated as hydrologic soil group “D” or equivalent, and
- The overland flow path from roof water discharge area has a positive slope of 5% or less.

For designs that meet these requirements, the portion of the roof that may be considered disconnected depends on the length of the overland path as designated in Table F.1.

<table>
<thead>
<tr>
<th>Table F.1: Partial Rooftop Disconnection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length of Pervious Flow Path *</td>
</tr>
<tr>
<td>(ft)</td>
</tr>
<tr>
<td>0 – 14</td>
</tr>
<tr>
<td>15 – 29</td>
</tr>
<tr>
<td>30 – 44</td>
</tr>
<tr>
<td>45 – 59</td>
</tr>
<tr>
<td>60 – 74</td>
</tr>
<tr>
<td>75 or more</td>
</tr>
</tbody>
</table>

* Flow path cannot include impervious surfaces and must be at least 15 feet from any impervious surfaces.

If the discharge is concentrated at one or more discrete points, no more than 1,000 square feet may discharge to any one point. In addition, a gravel strip or other spreading device is required for concentrated discharges. For non-concentrated discharges along the edge of the pavement, this requirement is waived; however, there must be a provision for the establishment of vegetation along the pavement edge and temporary stabilization of the area until vegetation becomes stabilized.

REFERENCE
APPENDIX G: HOT SPOTS

Hot spots are sites where the land use or activity produces a higher concentration of trace metals, hydrocarbons, or priority pollutants than normally found in urban runoff.

1. EXAMPLES OF STORMWATER HOT SPOTS

 - vehicle salvage yards and recycling facilities
 - vehicle fueling stations
 - vehicle service and maintenance facilities
 - vehicle and equipment cleaning facilities
 - fleet storage areas (bus, truck, etc.)
 - industrial sites (based on Standard Industrial Codes defined by the U.S. Department of Labor)
 - marinas (service and maintenance)
 - outdoor liquid container storage
 - outdoor loading/unloading facilities
 - public works storage areas
 - facilities that generate or store hazardous materials
 - commercial container nursery
 - other land uses and activities as designated by an appropriate review authority

2. LAND USE AND ACTIVITIES NOT NORMALLY CONSIDERED HOT SPOTS

 - residential streets and rural highways
 - residential development
 - institutional development
 - office developments
 - nonindustrial rooftops
 - pervious areas, except golf courses and nurseries (which may need an Integrated Pest Management (IPM) Plan).

3. LIST OF ACCEPTABLE BMPs for Hot Spot Treatment: The following BMP’s listed under the Best Management Practice column are BMPs appropriate for application on hot spot sites. BMPs which facilitate infiltration are prohibited by this ordinance. In many design manuals the BMPs with a * designation are designed with infiltration, however it is possible to design these without infiltration.

 The numbers listed under the Design Reference Number column correlate with the Reference Table which lists materials that can be used for design guidance.

<table>
<thead>
<tr>
<th>Best Management Practice</th>
<th>Design Reference Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bioretention*</td>
<td>4, 5, 11, 16</td>
</tr>
<tr>
<td>Capture/Reuse</td>
<td>4, 14</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>Constructed Wetlands</td>
<td>4, 5, 8, 10, 16</td>
</tr>
<tr>
<td>Dry Extended Detention Ponds</td>
<td>4, 5, 8, 12, 18</td>
</tr>
<tr>
<td>Minimum Disturbance/Minimum Maintenance Practices</td>
<td>1, 9</td>
</tr>
<tr>
<td>Significant Reduction of Existing Impervious Cover</td>
<td>N/A</td>
</tr>
<tr>
<td>Stormwater Filters* (Sand, Peat, Compost, etc.)</td>
<td>4, 5, 10, 16</td>
</tr>
<tr>
<td>Vegetated Buffers/Filter Strips</td>
<td>2, 3, 5, 11, 16, 17</td>
</tr>
<tr>
<td>Vegetated Roofs</td>
<td>4, 13</td>
</tr>
<tr>
<td>Vegetated Swales*</td>
<td>2, 3, 5, 11, 16, 17</td>
</tr>
<tr>
<td>Water Quality Inlets (Oil/Water Separators, Sediment Traps/Catch Basin Sumps, and Trash/Debris Collectors in Catch Basins)</td>
<td>4, 7, 15, 16, 19</td>
</tr>
<tr>
<td>Wet Detention Ponds</td>
<td>4, 5, 6, 8</td>
</tr>
</tbody>
</table>

Reference Table

<table>
<thead>
<tr>
<th>Number</th>
<th>Design Reference Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>“Conservation Design For Stormwater Management – A Design Approach to Reduce Stormwater Impacts From Land Development and Achieve Multiple Objectives Related to Land Use”, Delaware Department of Natural Resources and Environmental Control, The Environmental Management Center of the Brandywine Conservancy, September 1997</td>
</tr>
</tbody>
</table>
RECOMMENDED PRE-TREATMENT METHODS FOR “HOT SPOT” LAND USES:
The following table recommends what is considered the best pre-treatment option for the listed land use. These methods are either a BMP or can be applied in conjunction with BMPs.

<table>
<thead>
<tr>
<th>Hot Spot Land Use</th>
<th>Pre-treatment Method(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle Maintenance and Repair Facilities</td>
<td>- Water Quality Inlets</td>
</tr>
<tr>
<td>including Auto Parts Stores</td>
<td>- Use of Drip Pans and/or Dry Sweep Material Under Vehicles/Equipment</td>
</tr>
<tr>
<td></td>
<td>- Use of Absorbent Devices to Reduce Liquid Releases</td>
</tr>
<tr>
<td></td>
<td>- Spill Prevention and Response Program</td>
</tr>
<tr>
<td>Vehicle Fueling Stations</td>
<td>- Water Quality Inlets</td>
</tr>
<tr>
<td></td>
<td>- Spill Prevention and Response Program</td>
</tr>
<tr>
<td>Storage Areas for Public Works</td>
<td>- Water Quality Inlets</td>
</tr>
<tr>
<td></td>
<td>- Use of Drip Pans and/or Dry Sweep Material</td>
</tr>
<tr>
<td>Category</td>
<td>BMP Requirements</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Under Vehicles/Equipment</td>
<td>- Use of Absorbent Devices to Reduce Liquid Releases</td>
</tr>
<tr>
<td></td>
<td>- Spill Prevention and Response Program</td>
</tr>
<tr>
<td></td>
<td>- Diversion of Stormwater away from Potential Contamination Areas</td>
</tr>
<tr>
<td>Outdoor Storage of Liquids</td>
<td>- Spill Prevention and Response Program</td>
</tr>
<tr>
<td>Commercial Nursery Operations</td>
<td>- Vegetated Swales/Filter Strips</td>
</tr>
<tr>
<td></td>
<td>- Constructed Wetlands</td>
</tr>
<tr>
<td></td>
<td>- Stormwater Collection and Reuse</td>
</tr>
<tr>
<td>Salvage Yards and Recycling Facilities*</td>
<td>- BMPs that are a part of a Stormwater Pollution Prevention Plan under an NPDES Permit</td>
</tr>
<tr>
<td>Fleet Storage Yards and Vehicle Cleaning Facilities*</td>
<td>- BMPs that are a part of a Stormwater Pollution Prevention Plan under an NPDES Permit</td>
</tr>
<tr>
<td>Facilities that Store or Generate Regulated Substances*</td>
<td>- BMPs that are a part of a Stormwater Pollution Prevention Plan under an NPDES Permit</td>
</tr>
<tr>
<td>Marinas*</td>
<td>- BMPs that are a part of a Stormwater Pollution Prevention Plan under an NPDES Permit</td>
</tr>
<tr>
<td>Certain Industrial Uses (listed under NPDES)*</td>
<td>- BMPs that are a part of a Stormwater Pollution Prevention Plan under an NPDES Permit</td>
</tr>
</tbody>
</table>

*Regulated under the NPDES Stormwater Program
APPENDIX H: WEST NILE VIRUS GUIDANCE

(This source is from the Monroe County, PA Conservation District, who researched the potential of West Nile Virus problems from BMPs due to a number of calls they were receiving.)

Monroe County Conservation District Guidance:
Stormwater Management and West Nile Virus

The Monroe County Conservation District recognizes the need to address the problem of nonpoint source pollution impacts caused by runoff from impervious surfaces. The new stormwater policy being integrated into Act 167 Stormwater Management regulations by the PA Department of Environmental Protection (PADEP) will make nonpoint pollution controls an important component of all future plans and updates to existing plans. In addition, to meet post-construction anti-degradation standards under the state National Pollution Discharge Elimination System (NPDES) permitting program, applicants will be required to employ Best Management Practices (BMPs) to address non-point pollution concerns.

Studies conducted throughout the United States have shown that wet basins and in particular constructed wetlands are effective in traditional stormwater management areas such as channel stability and flood control, and are one of the most effective ways to remove stormwater pollutants (United States Environmental Protection Agency 1991, Center for Watershed Protection 2000). From Maryland to Oregon, studies have shown that as urbanization and impervious surface increase in a watershed, the streams in those watersheds become degraded (CWP 2000). Although there is debate over the threshold of impervious cover when degradation becomes apparent (some studies show as little as 6% while others show closer to 20%), there is agreement that impervious surfaces cause non-point pollution in urban and urbanizing watersheds, and that degradation is ensured if stormwater BMPs are not implemented.

Although constructed wetlands and ponds are desirable from a water quality perspective there may be concerns about the possibility of these stormwater management structures becoming breeding grounds for mosquitoes. The Conservation District feels that although it may be a valid concern, municipalities should not adopt ordinance provisions prohibiting wet basins for stormwater management.

Mosquitoes

The questions surrounding mosquito production in wetlands and ponds have intensified in recent years by the outbreak of the mosquito-borne West Nile Virus. As is the case with all vector-borne maladies, the life cycle of West Nile Virus is complicated, traveling from mosquito to bird, back to mosquito and then to other animals including humans. Culex pipiens was identified as the vector species in the first documented cases from New York in 1999. This species is still considered the primary transmitter of the disease across its range. Today there are some 60
species of mosquitoes that inhabit Pennsylvania. Along with \textit{C. pipiens}, three other species have been identified as vectors of West Nile Virus while four more have been identified as potential vectors.

The four known vectors in NE Pennsylvania are \textit{Culex pipiens}, \textit{C. restuans}, \textit{C. salinarius} and \textit{Ochlerotatus japonicus}. All four of these species prefer, and almost exclusively use, artificial containers (old tires, rain gutters, birdbaths, etc.) as larval habitats. In the case of \textit{C. pipiens}, the most notorious of the vector mosquitoes, the dirtier the water the better they like it. The important factor is that these species do not thrive in functioning wetlands where competition for resources and predation by larger aquatic and terrestrial organisms is high.

The remaining four species, \textit{Aedes vexans}, \textit{Ochlerotatus Canadensis}, \textit{O. triseriatus} and \textit{O. trivittatus} are currently considered potential vectors due to laboratory tests (except the \textit{O. trivittatus}, which did have one confirmed vector pool for West Nile Virus in PA during 2002). All four of these species prefer vernal habitats and ponded woodland areas following heavy summer rains. These species may be the greatest threat of disease transmission around stormwater basins that pond water for more than four days. This can be mitigated however by establishing ecologically functioning wetlands.

\textbf{Stormwater Facilities}

If a stormwater wetland or pond is constructed properly and a diverse ecological community develops, mosquitoes should not become a problem. Wet basins and wetlands constructed as stormwater management facilities, should be designed to attract a diverse wildlife community. If a wetland is planned, proper hydrologic soil conditions and the establishment of hydrophytic vegetation will promote the population of the wetland by amphibians and other mosquito predators. In natural wetlands, predatory insects and amphibians are effective at keeping mosquito populations in check during the larval stage of development while birds and bats prey on adult mosquitoes.

The design of a stormwater wetland must include the selection of hydrophytic plant species for their pollutant uptake capabilities and for not contributing to the potential for vector mosquito breeding. In particular, species of emergent vegetation with little submerged growth are preferable. By limiting the vegetation growing below the water surface, larvae lose protective cover and there is less chance of anaerobic conditions occurring in the water.

Stormwater ponds can be designed for multiple purposes. When incorporated into an open space design a pond can serve as a stormwater management facility and a community amenity. Aeration fountains and stocked fish should be added to keep larval mosquito populations in check.

Publications from the PA Department of Health and the Penn State Cooperative Extension concerning West Nile Virus identify aggressive public education about the risks posed by standing water in artificial containers (tires, trash cans, rain gutters, bird baths) as the most effective method to control vector mosquitoes.
Conclusion

The Conservation District understands the pressure faced by municipalities when dealing with multifaceted issues such as stormwater management and encourages the incorporation of water quality management techniques into stormwater designs. As Monroe County continues to grow, conservation design, groundwater recharge and constructed wetlands and ponds should be among the preferred design options to reduce the impacts of increases in impervious surfaces. When designed and constructed appropriately, the runoff mitigation benefits to the community from these design options will far out-weigh their potential to become breeding grounds for mosquitoes.
APPENDIX I: SMALL PROJECT STORMWATER MANAGEMENT (SWM) SITE PLAN

This small project stormwater site plan has been developed to assist those proposing residential projects to meet the requirements of the Buckingham Township Stormwater Management Ordinance without having to hire professional services to draft a formal stormwater management plan. This small project site plan is only permitted for residential projects proposing less than or equal to 5,000 square feet of impervious surface and less than 1 acre of earth disturbance.

A. What is an applicant required to submit?

A brief description of the proposed stormwater facilities, including types of materials to be used, total square footage of proposed impervious areas, volume calculations, and a simple sketch plan showing the following information:

- Location of proposed structures, driveways, or other paved areas with approximate surface area in square feet.
- Location of any existing or proposed onsite septic system and/or potable water wells showing proximity to infiltration facilities.
- Bucks or Montgomery County Conservation District erosion and sediment control “Adequacy” letter as required by Municipal, County or State regulations.

B. Determination of Required Volume Control and Sizing Stormwater Facilities

By following the simple steps outlined below in the provided example, an applicant can determine the runoff volume that is required to be controlled and how to choose the appropriate stormwater facility to permanently remove the runoff volume from the site. Impervious area calculations must include all areas on the lot proposed to be covered by roof area or pavement which would prevent rain from naturally percolating into the ground, including impervious surfaces such as sidewalks, driveways, parking areas, patios or swimming pools. Sidewalks, driveways or patios that are designed and constructed to allow for infiltration are not included in this calculation.

Site Plan Example: Controlling runoff volume from a proposed home site

Step 1: Determine Total Impervious Surfaces

<table>
<thead>
<tr>
<th>Impervious Surface</th>
<th>Area (sq. ft.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>House Roof (Front)</td>
<td>672 sq. ft.</td>
</tr>
<tr>
<td>House Roof (Rear)</td>
<td>672 sq. ft.</td>
</tr>
<tr>
<td>Garage Roof (Left)</td>
<td>144 sq. ft.</td>
</tr>
<tr>
<td>Garage Roof (Right)</td>
<td>144 sq. ft.</td>
</tr>
<tr>
<td>Driveway</td>
<td>1000 sq. ft.</td>
</tr>
<tr>
<td>Walkway</td>
<td>80 sq. ft.</td>
</tr>
<tr>
<td>Total Impervious</td>
<td>3000 sq ft</td>
</tr>
</tbody>
</table>

Stormwater BMPs

1. Five tree plantings; controls 30 cu. ft. of runoff.
2. Infiltration Trench; 3 ft (D) x 6 ft (W) x 34 ft (L)
3. Rain Garden; 268 sq. ft.
4. Dry Well; 3.5 ft (D) x 10 ft (L) x 10 ft (W)
5. Protect existing trees; reduces required volume control by 21 cu. ft.
6. Minimize soil compaction; reduces required volume control by 13.8 cu. ft. if planted with meadow, and 10.4 cu. ft. if planted with lawn.
Step 2: Determine Required Volume Control (cubic feet) using the following equation:

Capture Volume (cu. ft.) = (Total impervious area in square feet x 20 cu.ft./100 Sq.Ft)

\[(3,000 \text{ sq. ft.} \times 20 \text{ cu.ft.} / 100 \text{ sq.ft.}) = 600 \text{ cu. ft.}\]

Step 3: Determining required BMP type per Ordinance Section 303.B

1. At least 20% of Capture Volume to infiltration:
 \[600 \text{ cu.ft} \times 0.20 = 120 \text{ cu.ft.}\]
2. At least 40% of Capture Volume to be reused, evapotranspired, or infiltrated:
 \[600 \text{ cu.ft} \times 0.40 = 240 \text{ cu.ft.}\]
3. Remaining 40% of Capture Volume to be slowly released or infiltrated:
 \[600 \text{ cu.ft} \times 0.40 = 240 \text{ cu.ft.}\]

Step 4: Sizing the Selected Volume Control BMP

Several Best Management Practices (BMPs), as described below, are suitable for small stormwater management projects. However, their application depends on the volume required to be controlled, how much land is available, and the site constraints. Proposed residential development activities can apply both non-structural and structural BMPs to control the volume of runoff from the site. A number of different volume control BMPs are described below. Note that Figure 1 is an example of how these BMPs can be utilized in conjunction to control the total required volume on one site.

Structural BMPs

1. **Infiltration Trench**

An Infiltration Trench is a linear stormwater BMP consisting of a continuously perforated pipe at a minimum slope in a stone-filled trench. During small storm events, infiltration trenches can significantly reduce volume and serve in the removal of fine sediments and pollutants. Runoff is stored between the stones and infiltrates through the bottom of the facility and into the soil matrix. Runoff should be pretreated using vegetative buffer strips or swales to limit the amount of coarse sediment entering the trench which can clog and render the trench ineffective. In all cases, an infiltration trench should be designed with a positive overflow.

Design Considerations:

- Although the width and depth can vary, it is recommended that Infiltration Trenches be limited in depth to not more than six (6) feet of stone.
- Trench is wrapped in nonwoven geotextile (top, sides, and bottom).
- Trench needs to be placed on uncompacted soils.
- Slope of the Trench bottom should be level or with a slope no greater than 1%.
- A minimum of 6" of topsoil is placed over trench and vegetated.
- The discharge or overflow from the Infiltration Trench should be properly designed for anticipated flows.
- Cleanouts or inlets should be installed at both ends of the Infiltration Trench and at appropriate intervals to allow access to the perforated pipe.
- Volume of facility = Depth x Width x Length x Void Space of the gravel bed (assume 40%).

Maintenance:
- Catch basins and inlets should be inspected and cleaned at least two times a year.
- The vegetation along the surface of the infiltration trench should be maintained in good condition and any bare spots should be re-vegetated as soon as possible.
- Vehicles should not be parked or driven on the trench and care should be taken to avoid soil compaction by lawn mowers.

Figure 3: Infiltration Trench Diagram

Source: PA BMP Guidance Manual, Chapter 6, page 42.

Figure 4: Example of Infiltration Trench Installation

Source: PA BMP Guidance Manual, Chapter 6, Page 46.
Sizing Example for Infiltration Trench

1. Determine Total Impervious Surface to drain to Infiltration Trench:

<table>
<thead>
<tr>
<th>Surface</th>
<th>Dimensions</th>
<th>=</th>
</tr>
</thead>
<tbody>
<tr>
<td>Garage Roof (Left)</td>
<td>6 ft. x 24 ft.</td>
<td>144 sq ft</td>
</tr>
<tr>
<td>Driveway</td>
<td>12 ft. x 50 ft.</td>
<td>1000 sq ft</td>
</tr>
<tr>
<td>Walkway</td>
<td>4 ft. x 20 ft.</td>
<td>80 sq ft</td>
</tr>
</tbody>
</table>

2. Determine the required infiltration volume:

\[
\frac{1224 \text{ sq. ft.}}{100 \text{ sq. ft.}} \times \frac{20 \text{ cu. ft.}}{0.4*} = 612 \text{ cu. ft.}
\]

(*0.4 assumes 40% void ratio in gravel bed)

3. Sizing the infiltration trench facility:

\[
\text{Volume of Facility} = \text{Depth} \times \text{Width} \times \text{Length}
\]

Set Depth to 3 feet and determine required surface area of trench.

\[
612 \text{ cu. ft.} / 3 \text{ ft} = 204 \text{ sq ft.}
\]

The width of the trench should be greater than 2 times its depth (2 x D), therefore in this example the trench width of 6 feet selected.

Determine trench length: \[L = \frac{204 \text{ sq. ft.}}{6 \text{ ft.}} = 34 \text{ ft.} \]

Final infiltration trench dimensions: 3 ft. (D) x 6 ft. (W) x 34 ft. (L)

2. Rain Garden

A Rain Garden is a planted shallow depression designed to catch and filter rainfall runoff. The garden captures rain from a downspout or a paved surface. The water sinks into the ground, aided by deep rooted plants that like both wet and dry conditions. The ideal location for a rain garden is between the source of runoff (roofs and driveways) and the runoff destination (drains, stream, low spots, etc).

Design Considerations:
- A maximum of 3:1 side slope is recommended.
- The depth of a rain garden can range from 6 - 8 inches. Ponded water should not exceed 6 inches.
- The rain garden should drain within 72 hours.
- The garden should be at least 10-20 feet from a building’s foundation and 25 feet from septic system drainfields and wellheads.
- If the site has clay soils, soil should be amended with compost or organic material.
Choose native plants. See http://pa.audubon.org/habitat/PDFs/RGBrochure_complete.pdf for a native plant list. To find native plant sources go to www.pawildflower.org.

At the rain garden location, the water table should be at least 2' below the soil level. If water stands in an area for more than one day after a heavy rain you can assume it has a higher water table and is not a good choice for a rain garden.

Maintenance:
- Water plants regularly until they become established.
- Inspect twice a year for sediment buildup, erosion and vegetative conditions.
- Mulch with hardwood when erosion is evident and replenish annually.
- Prune and remove dead vegetation in the spring season.
- Weed as you would any garden.
- Move plants around if some plants would grow better in the drier or wetter parts of the garden.

Figure 5: Rain Garden Diagram

Source: PA BMP Guidance Manual, Chapter 6 Page 50

Sizing Example for Rain Garden

1. Pick a site for the rain garden between the source of runoff and between a low lying area, a.k.a., a drainage area.

2. Perform an infiltration test to determine the depth of the rain garden:
 - Dig a hole 8” x 8”
 - Fill with water and put a popsicle stick at the top of the water level.
 - Measure how far it drains down after a few hours (ideally 4).
 - Calculate the depth of water that will drain out over 24 hours.

3. Determine total volume of water to drain to rain garden:

 | House Roof (Front) | 14 ft. x 48 ft. | = | 672 sq ft |

 Volume = (672 sq. ft. /100 sq. ft. x 20 cu. ft) = 134.4 cu. Ft
4. Sizing the rain garden:

For this example the infiltration test determined 6” of water drained out of a hole in 24 hours. The depth of the rain garden should be set to the results of the infiltration test so that the rain garden completely drains in 24 hours. In this case, 6” is used for the depth of the rain garden.

\[
\text{Volume of Facility} = \text{Depth} \times \text{Rain Garden Surface Area}
\]

Set Depth to 6” (0.5ft) and determine required surface area of rain garden:

\[
134 \text{ cu. ft} / 0.5 \text{ ft} = 268 \text{ sq ft.}
\]

The rain garden should be about 270 sq. ft. in size and 6” deep.

3. **Dry Well (a.k.a., Seepage Pit)**

A Dry Well, sometimes called a Seepage Pit, is a subsurface storage facility that temporarily stores and infiltrates stormwater runoff from the roofs of structures. By capturing runoff at the source, Dry Wells can dramatically reduce the increased volume of stormwater generated by the roofs of structures. Roof leaders connect directly into the Dry Well, which may be either an excavated pit filled with uniformly graded aggregate wrapped in geotextile, or a prefabricated storage chamber or pipe segment. Dry Wells discharge the stored runoff via infiltration into the surrounding soils. In the event that the Dry Well is overwhelmed in an intense storm event, an overflow mechanism (surcharge pipe, connection to a larger infiltration area, etc.) will ensure that additional runoff is safely conveyed downstream.

Design Considerations:

- Dry Wells typically consist of 18 to 48 inches of clean washed, uniformly graded aggregate with 40% void capacity (AASHTO No. 3, or similar). “Clean” gravel fill should average one and one-half to three (1.5 – 3.0) inches in diameter.
- Dry Wells are not recommended when their installation would create a significant risk for basement seepage or flooding. In general, 10 - 20 feet of separation is recommended between Dry Wells and building foundations.
- The facility may be either a structural prefabricated chamber or an excavated pit filled with aggregate.
- Depth of dry wells in excess of three-and-a-half (3.5) feet should be avoided unless warranted by soil conditions.
- Stormwater dry wells must never be combined with existing, rehabilitated, or new septic system seepage pits. Discharge of sewage to stormwater dry wells is strictly prohibited.

Maintenance:

- Dry wells should be inspected at least four (4) times annually as well as after large storm events.
- Remove sediment, debris/trash, and any other waste material from a dry well.
- Regularly clean out gutters and ensure proper connections to the dry well.
- Replace the filter screen that intercepts the roof runoff as necessary.

Figure 6: Dry Well Diagram

Source: PA BMP Guidance Manual, Chapter 6, Page 65.

Sizing Example for Dry Wells:

1. Determine contributing impervious surface area:

 \[
 \text{House Roof (Rear)} \quad 14 \text{ ft.} \times 48 \text{ ft.} = 672 \text{ sq. ft.}
 \]

2. Determine required volume control:

 \[
 (672 \text{ sq. ft.} / 100 \text{ sq. ft.} \times 20 \text{ cu.ft.}) = 134.4 \text{ cu. ft.}
 \]

 \[134.4 \text{ cu ft} / 0.4 = 336 \text{ cu. ft.} \text{ (assuming the 40% void ratio in the gravel bed)}\]

3. Sizing the dry well:

 Set depth to 3.5 ft; Set width equal to length for a square chamber.

 \[336 \text{ cu. ft.} = 3.5 \text{ ft.} \times L \times L; \ L = 9.7 \text{ ft.}\]

 \[Dimensions = 3.5 \text{ ft.} (D) \times 10 \text{ ft.} (L) \times 10 \text{ ft.} (W)\]
Non-Structural BMPs

1. Tree Plantings and Preservation

Trees and forests reduce stormwater runoff by capturing and storing rainfall in the canopy and releasing water into the atmosphere through evapotranspiration. Tree roots and leaf litter also create soil conditions that promote the infiltration of rainwater into the soil. In addition, trees and forests reduce pollutants by taking up nutrients and other pollutants from soils and water through their root systems. A development site can reduce runoff volume by planting new trees or by preserving trees which existed on the site prior to development. The volume reduction calculations either determine the cubic feet to be directed to the area under the tree canopy for infiltration or determine a volume reduction credit which can be used to reduce the size of any one of the planned structural BMPs on the site.

Tree Considerations:
- Existing trees must have at least a 4” trunk caliper or larger.
- Existing tree canopy must be within 100 ft. of impervious surfaces.
- A tree canopy is classified as the continuous cover of branches and foliage formed by a single tree or collectively by the crowns of adjacent trees.
- New tree plantings must be at least 6 ft. in height and have a 2” trunk caliper.
- All existing and newly planted trees must be native to Pennsylvania. See http://www.dcnr.state.pa.us/forestry/commontr/commontrees.pdf for a guide book titled Common Trees of Pennsylvania for a native tree list.
- When using trees as volume control BMPs, runoff from impervious areas should be directed to drain under the tree canopy.

Determining the required number of planted trees to reduce the runoff volume:

1. Determine contributing impervious surface area:

 | Garage Roof (Right) | 6 ft. x 24 ft. | = 144 ft |

2. Calculate the required control volume:

 (144 sq. ft. / 100 sq. ft x 20 cu.ft.) = 28.8 cu. ft.

3. Determine the number of tree plantings:

 - A newly planted deciduous tree can reduce runoff volume by 6 cu. ft.
 - A newly planted evergreen tree can reduce runoff volume by 10 cu. ft.

 28 cu. ft./ 6 cu. ft. = 4.8, plant 5 Deciduous Trees

Determining the volume reduction for preserving existing trees:

1. Calculate approximate area of the existing tree canopy:
~22 sq. ft. x ~23 sq. ft = 500 sq. ft.

2. Measure distance from impervious surface to tree canopy: 35 ft.

3. Calculate the volume reduction credit by preserving existing trees:

 - For Trees within 20 feet of impervious cover:
 \[
 \text{Volume Reduction cu. ft.} = \frac{\text{Existing Tree Canopy sq. ft.} \times 1 \text{ inch}}{12}
 \]
 - For Trees beyond 20 feet but not farther than 100 feet from impervious cover:
 \[
 \text{Volume Reduction cu. ft.} = \frac{\text{Existing Tree Canopy sq. ft.} \times 0.5 \text{ inch}}{12}
 \]

\[
(500 \text{ sq. ft.} \times 0.5 \text{ inches}) / 12 = 21 \text{ cu. ft.}
\]

This volume credit can be utilized in reducing the size of any one of the structural BMPs planned on the site. For example, the 21 cu. ft. could be subtracted from the required infiltration volume when sizing the infiltration trench;

\[
612 \text{ cu. ft.} - 21 \text{ cu. ft.} = 591 \text{ cu. ft.}
\]

\[
591 \text{ cu. ft.} / 3 \text{ ft (Depth)} = 197 / 6 \text{ ft (Width)} = 32.8 \text{ ft (Length)}
\]

Using the existing trees for a volume credit would decrease the length of the infiltration trench to 32.8 ft. instead of 34.0 ft.

2. **Minimize Soil Compaction and Replant with Lawn or Meadow**

When soil is overly compacted during construction it can cause a drastic reduction in the permeability of the soil and rarely is the soil profile completely restored. Runoff from vegetative areas with highly compacted soils similarly resembles runoff from an impervious surface. Minimizing soil compaction and re-planting with a vegetative cover like meadow or lawn, not only increases the infiltration on the site, but also creates a friendly habitat for a variety of wildlife species.

Design Considerations:

- Area shall not be stripped of topsoil.
- Vehicle movement, storage, or equipment/material lay down shall not be permitted in areas preserved for minimum soil compaction.
- The use of soil amendments and additional topsoil is permitted.
- Meadow should be planted with native grasses. Refer to *Meadows and Prairies: Wildlife-Friendly Alternatives to Lawn* at http://pubs.cas.psu.edu/FreePubs/pdfs/UH128.pdf for reference on how to properly plant the meadow and for a list of native species.
Determining the volume reduction by minimizing soil compaction and planting a meadow:

1. Calculate approximate area of preserved meadow:

 \[\sim 22 \text{ ft} \times \sim 23 \text{ ft} = 500 \text{ sq. ft.} \]

2. Calculate the volume reduction credit by minimizing the soil compaction and planting a lawn/meadow:

 - For Meadow Areas: Volume Reduction (cu. ft.) = \((\text{Area of Min. Soil Compaction (sq. ft.) x 1/3 inch of runoff}) / 12\)

 \[(500 \text{ sq. ft.} \times \frac{1}{3} \text{ inch of runoff}) / 12 = 13.8 \text{ cu. ft.} \]

 - For Lawn Areas: Volume Reduction (cu. ft.) = \((\text{Area of Min. Soil Compaction (sq. ft.) x 1/4 inch of runoff}) / 12\)

 \[(500 \text{ sq. ft.} \times \frac{1}{4} \text{ inch of runoff}) / 12 = 10.4 \text{ cu. ft.} \]

This volume credit can be used to reduce the size of any one of the structural BMPs on the site. See explanation under the volume credit for preserving existing trees for details.

Alternative BMP to Capture and Reuse Stormwater

Rain Barrels

Rain barrels are large containers that collect drainage from roof leaders and temporarily store water to be released to lawns, gardens, and other landscaped areas after the rainfall has ended. Rain barrels are typically between 50 and 200 gallons in size. It is not recommended for rain barrels to be used as a volume control BMP because infiltration is not guaranteed after each storm event. For this reason, a rain barrel is not utilized in the site plan example. However, the information is included to provide an alternative for a homeowner to utilize when considering capture and reuse stormwater methods.

Design Considerations:
- Rain barrels should be directly connected to the roof gutter/spout.
- There must be a means to release the water stored between storm events to provide the necessary storage volume for the next storm.
- When calculating rain barrel size, rain barrels are typically assumed to be 25% full because they are not always emptied before the next storm.
- Use screens to filter debris and cover lids to prevent mosquitoes.
- An overflow outlet should be placed a few inches below the top with an overflow pipe to divert flow away from structures.
- It is possible to use a number of rain barrels jointly for an area.
Sizing Example for a Rain Barrel

1. Determine contributing impervious surface area:

| Garage Roof (Right) | 6 ft. x 24 ft. | = | 144 sq ft |

2. Calculate the volume to be captured and reused:

\[
\text{(144 sq. ft./100 sq. ft. x 20 cu.ft.)} = 28.8 \text{ cu. ft.}
\]

3. Size the rain barrel:

1 cu. ft. = 7.48 gallons
28.8 cu. ft. x 7.48 = 215.42 gallons

215.42 gallons x (0.25*) = 53.86 gallons (*assuming that the rain barrel is always at least 25% full)

215.42 gallons + 53.86 gallons = 269.3 gallons

*The rain barrel or barrels should be large enough hold at least 269.3 gallons of water.

Step 5: Verify Compliance with Volume Requirements (600 cu.ft.)

1. Total stormwater infiltrated = 245 cu.ft. (Infiltration Trench) + 134.4 cu.ft. (Rain Garden) + 134.4 cu.ft. (Dry Well) = 513.80 cu.ft.

2. Total Amount reused, evapotranspired or infiltrated through nonstructural BMPs = 30 cu.ft. (Tree Planting) + 21 cu.ft (Tree Protection) + 13.8 cu.ft. (Minimization of Soil Compaction) + 28.8 cu.ft. (Rain barrels) = 93.60 cu.ft.

3. Slowly Released from Site through other BMPs = 0

Total Capture Volume = 513.80 cu.ft. + 93.60 cu.ft + 0 cu.ft. = 607.40 cu.ft. > 600 cu.ft.
REFERENCES:

APPENDIX J: REFERENCES

Articles / Books

ACT 167 PLANS

BMP Manuals

California

Georgia
Maryland
2000 Maryland Stormwater Design Manual –
http://www.mde.state.md.us/Programs/WaterPrograms/SedimentandStormwater/stormwater_design/index.asp

Massachusetts

Minnesota

New Jersey

New York
http://www.dec.ny.gov/chemical/29072.html

Pennsylvania
http://164.156.71.80/WXOD.aspx?fs=2087d8407c0e00008000071900000719&ft=1

Washington

Federal

USEPA Infiltration Trench Fact Sheet (September 1999) –
http://cfpub.epa.gov/npdes/stormwater/menuofbmps/index.cfm

Riparian Buffer References

Alliance for the Chesapeake Bay, Pennsylvania Department of Environmental Protection, September 2000. Forest Buffer Toolkit, Stream ReLeaf Program.

Modeling Data
The SCS Type II rainfall curve ~ National Oceanic and Atmospheric Administration (NOAA) Atlas 14 rain data corresponding to the Doylestown rain gage. This data may be retrieved from the Atlas 14 website: http://hdsc.nws.noaa.gov/hdsc/pfds/orb/pa_pfds.html